MIPS R10000 Microprocessor
User’s Manual

Version 2.0

Copyright © 1996 MIPS Technologies, Inc.
ALL RIGHTS RESERVED

U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the Government is subject to restrictions
as set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights
in Technical Data and Computer Software clause at DFARS 252.227-7013
and/or in similar or successor clauses in the FAR, or the DOD or NASA
FAR Supplement. Contractor/manufacturer is Silicon Graphics, Inc., 2011
N. Shoreline Blvd., Mountain View, CA 94039-7311.

RISCompiler, RISC/os, R2000, R6000, R4000, R4400, and R10000 are
trademarks of MIPS Technologies, Inc. MIPS and R3000 are registered
trademarks of MIPS Technologies, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd.

MIPS Technologies, Inc.
2011 North Shoreline
Mountain View, California 94039-7311

http://www.mips.com

Acknowledgments

This book represents a consortium of efforts, and is principally derived from
material provided by Randy Martin, Yung-Chin Chen, and Ken Yeager.

Thanks also to Randy for his many painstaking reviews of this manual.
Also providing invaluable service were the following:

Shabbir Latif, for once again running point between Engineering and
Publications, answering questions, and presenting tutorials to clarify the
complicated details of the R10000 processor operations.

Charlie Price, for use of his rejuvenated MIPS-4 Instruction Set Architecture.

Steve Proffitt, for both his technical assistance, and helping handle the multitude
of niggling details involved in getting this manual printed.

The following also provided technical help in innumerable ways: Arun Mehta,
Tim Layman, Greg Shippen, Yeffi Van Atta, John Brennan, Len Widra, Roy
Johnson, Hector Sucar, Hong-Men Su, Mazin Khurshid, Steve Whitney, Doug
Yanagawa (chip illustrations and socket pinouts), Mike Gupta, Steven Peltier,
Rob Conrad, Hai Nguyen, Bill Voegtli, and Sharad Mehrotra at the University
of Illinois.

Remediating a prior deficiency, thanks to Tom McReynolds.

In Production and Creative, thanks to Melissa Miller for her design of the cover
(appreciable in hardcopy only, right now!); Yen Nguyen, for handling the
printing; both Kay Maitz and Beth Fraker for resolving various design issues; and
Michael Ritchie for tracking progress.

Joe Heinrich
December, 1995
Mt. View, California

R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997 iii

R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

v

About This Manual

Glossary

Stylistic Conventions

Errata

‘FErrata

This manual describes the MIPS R10000 RISC microprocessor (also referred to as
the processor in this book).

Certain specialized terms used in this book are defined in the Glossary at the end
of this manual.

A brief note on some of the stylistic conventions used in this book: bits, fields, and
registers of interest from a software perspective are italicized (such as the BE bit in
the Config register).

Signal names of more importance from a hardware point of view are rendered in
bold (such as Reset*). The asterisk appended to the signal name (as in Reset*)
indicates the signal is low-active.

A range of bits uses a colon as a separator; for instance, (15:0) represents the 16-bit
range that runs from bit 0, inclusive, through bit 15. In some places an ellipsis
(15...0) or partial ellipsis (15..0) may used in place of a colon for visibility.

Unfamiliar terms presented for the first time are printed in bold letters, and are
followed as closely as possible by a definition or description.

This document is updated from changes made to the Version 1.0 document, dated
June 26, 1995. Any corrections made to this manual will be found in the R10000
User Manual Errata for Revision 2.0. The errata in this manual are indicated by the
following paragraph heading:

Specific changes to the text are underlined in the text, as shown below, while
descriptions of changes that have been made are italicized, as shown below.

PLLDis and SelDVCO signal descriptions are revised in Table 3-4.

System designers must take care, especially in desktop applications, to ensure
sufficient airflow.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997 v

vi

Getting MIPS Documents On-Line

The information in this manual, and other MIPS-related product information, is
also available over the Word Wide Web at:

http://www.mips.com

Requests can also be e-mailed to webteam-mips@mti.sgi.com.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents vii

Contents
Acknowledgments
About ThisManual
GLOSSATY evviiiicect ettt v
Stylistic CONVENLIONSc.c.cuiuiuiiiiiiiiiiiiieicicieieeiee e v
BITAtA cooviiiiiiic s v
Getting MIPS Documents ON-Linec.cccooceiiiniiiiiiiic s vi

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

viii Table of Contents

1
Introduction to the R10000 Processor
MIPS Instruction Set Architecture (ISA)ccvevrerriniinireeereee et 2
What is a Superscalar PrOCESSOI? ... 3
Pipeline and Superpipeline Architecture............coooooeiiiiiiiie 3
Superscalar ArchiteCtureocovviviiiiiiiiiiiiiii s 3
What is an R10000 MiCIOPTOCESSOL?cveviuiuimiiiiiiiiiecccteec et 4
R10000 Superscalar Pipeline............ccooeeueiiiiriiiiiiicieci e 5
INStruCtion QUEUES......cocvieiieiecieeee ettt ettt e e ae et e s beesaeessbe e beessaeeaseensneensas 6
EXecution PIPelinesccoviiiriiiiiiiiiiieiicrrcceee s 6
64-bit Integer ALU Pipeline........ccoouoiiiiiiiiii e 6
Load/Store Pipeline..........cccoiiiiiiiiiiiiiiiiiiciiiiee e 7
64-bit Floating-Point Pipeline...........cccccccoiiiiiiiiiiiiiiiiceccecceeeeeenenas 7
Functional Unitscccoiiiiiiiiiiiiiiiic s 9
Primary Instruction Cache (I-cache)..........cccccovviiiiniiiiiiiiiii 9
Primary Data Cache (D-Cache)cccovvviiiiiriniiiiiiiiricccececeeeeee s 9
Instruction Decode And Rename Unit........cccocovuviviiiiiiiiiiiniiiiiiiicccs 10
Branch Unit ... 10
External INterfaces..........cooovviiiiiiiiiiiiccc s 10
INSIUCHON QUEUEScevieieeiieiieteetetee ettt ettt ae et e et e b e s b e s e e saesseessesseessesseessesseensenseas 11
Integer QUEUE ..o 11
Floating-Point QUEUE...........c.coriiiiiiirrcccrerre s 11
AdAIESS QUEUE ..ottt ettt et et e te e b e e teesaesreesaesssessesssessesssesenssasenns 12
Program Order and Dependencies ... 13
Instruction DePendencies..........ccovvrriirrrnirininireecerree s 13
Execution Order and Stallingcoceueiiiiiiiiiiiiic s 13
Branch Prediction and Speculative EXecutioncoceeieiiiinniicieccee 14
Resolving Operand Dependencies..............coovuveveririrerinenenirininninrsrseecsseeeeeeeseseseas 14
Resolving Exception Dependencies............ccoceueiiiurieiiiiiicieeccieeec e 15
SHrONG OLdeTiNg......ccoivviiiiiiiiiiiiii s 15
An Example of Strong Orderingccccccoecciiiiiiieieeeceeeeeeeeeenenenes 16
R10000 PIPELINES ...ttt 17
STAGE 1 o 17
STAGE 2 o 17
SEAGE B e 18
STAGES 40 ..o 18
Floating-Point Multiplier (3-stage Pipeline)...........cccccoceiiiiiiciiiieccccenenes 18
Floating-Point Divide and Square-Root Units.........c.cccoeerieiiiincieiiicce 18
Floating-Point Adder (3-stage Pipeline)cccccocovoiiiiiiiiiiiiie 18
Integer ALU1 (1-stage Pipeline).........ccccoceiiiiiiiiiiiiiiccececccceeeieenenenes 18
Integer ALU2 (1-stage Pipeline)........c.cocooeieiiirieiiiiiiiciiccce e 18
Address Calculation and Translation in the TLB ..., 19
Implications of R10000 Microarchitecture on Software.............cccocoviiiiiiniiiininciieeeae. 20

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents ix

Superscalar INStruction ISSUe............cocuiiiiiiiiic 20
Speculative EXECUtION........cccoviiiiiiiiiiiiiiiiiic e 21

Side Effects of Speculative EXeCUtion............ccccceeiiiiiiiiiniiiiiiccccceeee 21
Nonblocking Caches ... 25
R10000-Specific CPU INSTIUCHONS........ccuivimimiiiiiiiiiiiiiciiiiiciceiecieeeee e 26
PREF ...t 26
LL/SC o 27
SYNC ... 28
PeIfOrMANCEcoviieiiiiicet s 28
User Instruction Latency and Repeat Ratecooooiiiiiiii 29
Other Performance ISSUESccoccueiiiiieiirniciiiieere e 31
Cache Performance ... 31

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

x Table of Contents

System Configurations
UnNiprocessor SYSTEMS........c.ciiiiiiiiiiniiiciciiecce st 34
MUltiPTOCESSOT SYSLEIMS. ... 35
Multiprocessor Systems Using Dedicated External Agents............cccooooeviiiiriiinnne. 35
Multiprocessor Systems Using a Cluster Bus...........cccccovvvvviviininnii 36

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xi

3
Interface Signal Descriptions
Power Interface Signals ... 38
Secondary Cache Interface SIgnalscccccociiiiiiiiiiiiiecceeeeee e 39
System Interface Signals...........cocoveviiiiiiiiiiiic s 41
Test Interface SigNAlsccccccuiiiiiiiiiiiiii e 43

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

xii Table of Contents

4
Cache Organization and Coherency

Primary Instruction Cache ... 46
Primary Data Cacheccccoiiiiiiiiiiicccccc e 48
Secondary Cache............oiic 51
Cache AIGOTItIMS ... 53
Descriptions of the Cache AIZOTithmscccoevviiivirivniiiiicccccrcc e 54
UNCAChed ... 54

Cacheable NONCONETENLc.cucuiiiiiiiiiiiiciccc e 54

Cacheable Coherent EXCLUSIVEccccccuiuiuiiiiiiiiiiccccceeeeeeeeee e 54

Cacheable Coherent Exclusive on WIite..........cccoiiiiiiiiiiiiniiiiiiccceicnnes 54

Uncached Accelerated ... 55
Relationship Between Cached and Uncached Operations.............ccccoeiiiiiiininiccinnnncnee. 56
Cache Algorithms and Processor Requestsccceueiiiiiiiiiiiciccc 57
Cache Block OWNETShIPcoiimiiiiiiiiiiiiiiccc s 58

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xiii

5
Secondary Cache Interface
Tag and Data ATTAYS.......ccccoiiiiiiiiiiiii s 60
Secondary Cache Interface Frequencies............cccccoccciiiiiiiiiiiiiiccccceccceeeeeenennes 61
Secondary Cache INdeXing.........c.ccueiiiriiiiiiiiiic s 62
Indexing the Data AITayccccoeeieiiiiiiiiiicci e 62
Indexing the Tag ATITaYcccccccuiriiiriiiiiiccee e 63
Secondary Cache Way Prediction Tableccoooiiiiiiiiiie 64
Secondary Cache Tag.........cccccuiiiiiiiiiiiiiiiiiiii e 66
SCTag(25:4), PRYSICal Tag.......cceeururueueieieiiieieieieieieieieicieetetete e 66
SCTag(3:2), PLAX ..cucviiieeiiit e 67
SCTag(1:0), Cache Block Stateccccoeuviiiiiiiiiiiiiiiiiiiiiiiiiiii e 67
REAA SEQUEIICES ...ttt 68
4-Word Read SEqUENCEcueviieiiiiiet et 69
8-Word Read SeqUENCEcccccuviviiiiiiiiiiiiiiiiii e 70
16 or 32-Word Read SEqUEINCE............ocoiiiuiiiiiiiiiccccccecc e 71
Tag Read SEqUENCEcoviirii 72
WIIte SEQUENCES ..ot s 73
4-Word WIIte SEQUENCE.......c.couimimiiiiiiiiiiciccecteeeicee e 74
8-Word Write SEQUENCE..........coouiiiiii 75
16 or 32-Word Write SEqUENCE..........ccciiiiiiiiiiii e 76
Tag Write SEqUENCEcooviiiiiiiiiiiiicc s 77

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

Xiv Table of Contents

6
System Interface Operations
Request and Response CyCles...........oiiiiiiiiiicisens 80
System Interface FrEQUENCIEScccciiiiiiiiiiiiiccccccccccccee e 80
Register-to-Register Operation.............occiuoiiiiiciiii 80
System Interface SIGNalS..........cccoiiiiiiiiiiiii s 81
Master and Slave STatesccoviiviiiiiiiii e 81
Connecting to an External Agent ..o 81
CIUSEET BUS ...t 82
System Interface CONNECHONS........c.coiiiiiiiiiiiiiicc e 83
UNiprocessor SYSTEIMcuouiiiuiiiiicieie ettt 83
Multiprocessor System Using Dedicated External Agentscccccevvivviniiiinnininnne. 84
Multiprocessor System Using the Cluster Bus...........ccovvuvvviiinnnnniirrccccne 85
System Interface Requests and ReSPONSES...........c.ccuevruirueiiieiiieiii e 86
Processor REQUESES ..o 86
External RESPONSES.........cccouviiiiiririiiiiireecc s 87
External REqUESESc.c.oviuiiiii s 87
Processor RESPONSES ..ottt 87
Outstanding Requests and Request Numbers...........cccccoovvvviiinnnnninrnccieene 87
Request and Response Relationship..........ccoccueiiiiiieiiiiiiiccce 88
System Interface BUffers............ccoooiiiiiiiiiiiiii s 89
Cluster Request BUfer...........cooiiiiiiiccrccrre s 89
Cached Request BUFferccoiuiiiiiic s 89
Incoming BUffer ..o 90
OULGOING BULET ..o s 91
Uncached BUffer ... s 92
System Interface FLIow CONtrol ... 93
Processor Write and Eliminate Request Flow Controlcccccoovvvvininnvnnnnenes 93
Processor Read and Upgrade Request Flow Control...........cccooreiiiiiiiciiiiciciene, 93
Processor Coherency Data Response Flow Control..........cccooovieiiiiicnniccccee 93
External Request FIOw CONtIolcooviiiiiiiiiiiiiiiiiiiceeeecee s 93
External Data Response Flow Controlcooiiiiiiiiiicccc e 93
System Interface Block Data Ordering ..o 94
External Block Data RESPONSEScccvvvvevuriiriririiriiiiiccceccreeee s 94
Processor Coherency Data ReSponses...........cccouiiurieiiiiiicicicicceec e 94
Processor Block Write ReqUEStSc.cceuiiiiiiiiiiici s 94
System Interface Bus ENCOAINGc.ccoiiiiiiiiiiiiiiiiccccccccce e 95
SysCmd[11:0] ENCOAINGcvvuriiiiiiiiicieiei e 95
SysCmd[11] ENCOAINGcovvimimiiiiiiiiiiiiiiiiiiiiciicci e 95
SysCmd[10:0] Address Cycle ENcoding..........c.cccoeeueeuiuiiiiiiiiiciccccccennes 95
SysCmd[10:0] Data Cycle ENCOAINGcoovvuivimeiiiiiieiiice e 99
SysCmA[11:0] MaP ...eviiiiiiiiiiiiciic e 101
SYSADI[63:0] ENCOAINGouvviiiiiiirrcccree s 102

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xv

SysAD[63:0] Address Cycle ENcoding..........ccoveuirininininiiiniiciecce e, 102
SysAD[63:0] Data Cycle ENCOdingccooveiiiininiiiieieicciecccci 104
SysState[2:0] ENCOAINGc.ovoviviiiiiiriiiiiciciciieiciccceeeeeeieie e 104
SysResp[4:0] ENCOINGoviurmiiiiiiiiieie s 105
INEETTUPLES .ot 105
Hardware INTEITUPES.......c.cuvuiiiiiieicieieiiciccieeeeeeee e 105
Software INLEITUPLSvvieiiciici s 106
Timer INTeITUPE ... 106
Nonmaskable INTEITUPLccciiiiiiiiiiiceceeceeecece e 106
Protocol AbDreviations.........ccciuiiiiiiiiiiiiiiiiiciic e 107
System Interface Arbitration............ccccociiiiiiiiiiii e 108
System Interface Arbitration Rules..........c.ccccceiiiiiiiiiiiicccecccceeceeenas 109
UNiprocessor SYSTEIMuiurieiiiiiciececie et 110
Multiprocessor System Using Cluster Busccooeiiiiiiiiiiiciccc 111
System Interface Request and Response Protocol...........ccccocciiiiiiiiiciiiccecccccennes 112
Processor Request Protocol...........c.oiiuiiiiiiii 112
Processor Block Read Request Protocol............ccooviiiiiiiiiiiiiicccce 113

Processor Double/Single/Partial-Word Read Request Protocol........................ 115

Processor Block Write Request Protocol...........ooueviiiiiiiiiiiicc 117

Processor Double/Single /Partial-Word Write Request Protocol....................... 119

Processor Upgrade Request Protocol..........cccooiiiiiiiiiiiiiiicicccccceee, 121

Processor Eliminate Request Protocol...........coooiieiiiiiiciiiic 123

Processor Request Flow Control Protocol ... 125

External Response Protocolcccciiiiiiiiiiiiiiiiiiiiiccccicceeiceeeeeeie e 127
External Block Data Response Protocol............ccceuiiiiiiiiiiciiiiiccccc 127

External Double/Single/Partial-Word Data Response Protocol....................... 129

External Completion Response Protocol ..., 130

External Request Protocol...........c.cuoviiiiiiiiiiic 132
External Intervention Request Protocol..........cccoiiiiiiiiiiiiiiiine, 133

External Allocate Request Number Request Protocol..............ccccvviiiiiiinnnce. 134

External Invalidate Request Protocol...........cccooiiieiiiniiiciiiciccc 135

External Interrupt Request Protocol............cccooiiiiiiiiiiiiiie, 136

Processor Response ProtoCol........c.ccucuiiiiiiiiiiiiiiiiiiiiiccccicceecce e 137
Processor Coherency State Response Protocolccceviinieiiiiiiciiiiiccea 138

Processor Coherency Data Response Protocol ..o, 139

System Interface CONEIENCYc.cccocuiuiiiiiiiiiiiiiiiiicece e 141
External Intervention Shared Requestc.coooriioiiiiiiiii, 141
External Intervention Exclusive Request...........ccccccoeuiiiiiiiiiiiiiininiiiiiiiccccccccns 141
External Invalidate ReqUESL........ccccoeueuiiiiiiiiiiiiiicicccccceeec e 141
External Coherency Request ACHON.........cccoueiiiiciiiiiiicc e 142
Coherency CONSLCES.......cccvvviiiiiiiiiiiiiicic e 143
Internal Coherency COnfliCts. ..o 143

External Coherency COonflicts.........c.ccovueiiueiiiniiiciicccc 144

External Coherency Request Latency ..o, 146

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

xvi Table of Contents

SysGDbIPerf* Signal.........ccouovuiiiiriiiiiieicece s 148
Cluster Bus Operation ... s 148
SUPPOTE FOT I/ O 152
Support for External Duplicate Tagsc.cccoeviriririniiieiiieiece e 152
Support for a Directory-Based Coherency Protocol..........cccoooioiiiiiiiiiiiiiiccccie 153
Support for Uncached AHTIDULE ..o 153
Support for Hardware EMulation...........ccoeuoiiioiiiiiniic e 154

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xvii

7
Clock Signals
System Interface Clock and Internal Processor Clock Domainsccccceeuiviiiiciciiiiincnnns 156
Secondary Cache CLOCKc.cooiiiiiiiiiiiieccecee e 157
Phase-LocKed-LoOP.....cccoiiiiiiiicieict e 158

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

xvii Table of Contents

8
Initialization
Initialization of Logical ReGiSters.........cccccciiiiiiiiiiiiiiicics 160
Power-On Reset SEQUENCE.............coiiiiiiiiiiiiii s 160
Cold ReSet SEQUENCE ...ttt 162
SOft RESEt SEQUETICE ...t 163
MO BItS ..ottt ettt ettt ettt ettt ettt b e ettt eab et e et e te et e eteeateeaeebeeaeenbeeren 164

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xix

9
Error Protection and Handling

COrrectable EITOTScooiiiiiiiiiiicc ettt 168
Uncorrectable EITOTScoiiiiiiiiic e 169
Propagation of Uncorrectable EITOTS..........cccoiiiiiiiiiiiiiieicc s 170
Cache Error EXCEPION........ciiiiiiiiiiiic e 171
CPO0 CacheErr Register EW Bitccccccciiiiiiiiiiiicccccccccccceeeee e 172
CPO Status Register DE Bit........ccooouoiiiiiii s 172
CACHE INSIUCHON ...ttt 172
Error Protection Schemes Used by R10000.........c.ccceeuiuimimiimiiiiiicieeeeeeeeieeneeneneeenenenenes 173
Parity cocvcveieieieee s 173
Sparse ENCOAINGccovviiiiiiiiiiiiiiiiiiii e 173

BCC s 173
Primary Instruction Cache Error Protection and Handling.............coooooeiiiiiiinnne 174
Er1or PrOteCtion ..ot 174
Error Handlingcooeiiiiiiiiccceeeeceee e 174
Primary Data Cache Error Protection and Handling.............coooeeieiiinie 175
Er1or PrOteCtion ..ot 175
Error Handlingccoooiiiiiiiiccceecccee e 175
Secondary Cache Error Protection and Handling ..o 176
Er1or PrOteCtion ..ot 176
Error Handlingccoooiiiiiiiiccceecccee e 176

Data ATTAYcoiiiiiiiiiiiii s 176

TaG ATTAY vt 179

System Interface Error Protection and Handlingcccccoociiiiiiiiiiiiiiiccccccenes 180
EITOT PrOteCHON ..ovet s 180
Error Handling ..o 181
SYSCMA(11:0) BUS...ccuvimiiiiiiiiiiiccccc e 181
SYSAD(63:0) BUSviviiiiiiiriiiiiins s 182
SysState(2:0) BUS.......ccviiiiiiiii s 184
SYSRESP(4:0) BUS.....ceeiiiiiiiic e 184

Protocol ObServation ... 185

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

xx Table of Contents

10
CACHE Instructions
Notes on CACHE Instruction Operations ...t 188
ViIrtual AATESS ..c.evveviiieieiiiietcctnereeeeretet et ettt neeenaen 188
Physical AddIeSSc.coiiuiiiiiiii s 188
CPO NOE USEDLE.....eeniiieiiiieieieiestrte ettt ettt sttt bttt ebene 188
TLB Refill and TLB Invalid Exceptions on CacheOpscccccoevvrvvvirirrvervrnnene 189
Hit Operation ACCESSESc.ccoviuriiiiiiicieie it 189
Watch EXCEPHONcccviiiiiiiiiiiiic s 189
Address Error EXCEPHONccovvvviviiiiiiiricciciicrrccreece s 189
WWIIEE BACK .ottt sttt 189
INVAIIAAEION .. cetititec ettt ettt 190
CE Bl ettt ettt ettt ettt 190
CH Bieecuiiieecirieiceeteec ettt ettt ettt ettt sttt sttt ettt 190
Serial Operation of CACHE INStructions............ccoceeieieiiicieiniiiceccceeeees 190
Instructions NOt SUPPOTLEd.cccovvviriviiiiiiiiiccrreer s 190
Op Field ENCOAINGvvnieiiii e 191
Index INValidate (I)coeereeuerieenieerieeneertee ettt ettt sttt ettt st 192
Index WriteBack INvalidate (D)cccervevierierieieieieieieeeeetesie ettt se e eseesaesessessassassessensas 192
Index WriteBack INvalidate (S)....c.ccccveeerieimeirinieinerncrecreeereeeseeese ettt 193
Index Load Tag (L) ...ccoiiiiiiiiiiiiicc s 194
Index Load Tag (D) ...c.cciiiiiieeccecc e 194
Index Load Tag (S)cccoeueuirurieieiicieie ettt 195
INdex StOre Tag (L) ...c.cviviiiiiiiiiiic s 195
Index StOre Tag (D) ... 196
INdex StOre Tag (S) ..ovevevivivieiiiiiicccc s 196
Hit INVAlIAAte (1) .eeoveveeeeieieeeierieiee ettt ettt ettt bbbttt st besens 197
Hit INVAlIAAE (D) ..vveveeeieeieieieiieiisieriesiest et ettt ttete s e ssessessessesse s essessessessessessesseseasessensessessenses 197
Hit INValidate (S) c.evevereeireeieereeereerc ettt ettt sttt sttt st 198
CACNE BATTIET ...ttt et ettt ettt e st e st e et et et et et e st eseeneesesseesessessansan 198
Hit Writeback INValidate (D)ceevevierierieieieieieeeieteeeeeteete ettt tesaeseseesaesaesesssssassassessesss 199
Hit WriteBack INValidate (S)coeoiririiieieieete ettt s 200
Index Load Data (1) «..cceeeeeerieenieinieerieereeeneeerteesietei ettt st sttt ettt st st 201
Index Load Data (D)....cccceeieiriririiniirierieieieieteteeeiteetse s e s sesse st s essessessessessessessesessessessessessenses 201
INdex Load Data (5)...ccceveeeeerrerieirieinieerteenetrietnieeereterese et sttt sttt ettt 201
Index Store Data (1) «..coceeeeeverieerieereerieerte ettt ettt sttt 202
INdeX StOT€ Data (D)....ccccveieieiriisiirierierteieietet et ettt eete et re st ss b e bessessessessessesaeseeseaseesensessensas 202
INAEX STOTE DAata (S)...cvevereerereeiiriiirieirteertetretrc ettt sttt ettt 202

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xxi

11
JTAG Interface Operation
Test ACCESS POTt (TADP) .ottt ettt ettt ettt ens 204
TAP Controller (INPUL)c.oveveieiiieieiieiecceeeeeeee e 204
INStruction REISTETc.cuiuiiiiiiiiiiiii e 205
Bypass REGISter.........coiiiiiiii e 205
Boundary Scan ReGIStErc.cccuiuiiiiiiiiiiiiiccccceecceeee e 206

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

xxii Table of Contents

12
Electrical Specifications
DC Electrical Specificationcccciiiiiiiiiiiiiiiic s 210
DC PoOWer SUPPLY LEVELS ..o 210
DCOk and Power Supply SEQUENCINGcceveiiiurieieiiciee s 211
Maximum Operating CONditions...........cccoveeieiiiiiiiieicec s 211
Input Signal Level SENSING.........ccouviviririiiiiiiirrrccrrecee s 212
Mode Definitions........cccouieiiiiiimiiiiiiiii s 212
VIEE[SC,SYS] oo 212
UNUSEA INPULS ..o 213
DC Input/Output Specificationsccoeeuieininininiciic s 214
AC Electrical Specificationccciiiiiiiiiiiiiiiccc s 215
Maximum Operating CONditions...........ccceuvuveririririririrrririrerreeeeeeeeeeee s 215
Test SPecification..........ocoviuiiiieiii s 215
Secondary Cache and System Interface Timing............cccocoeeveiiiieiiiniicceecceeee 215
Enable/Output Delay, Setup, Hold Time.........cccccoeurvviiiniinniiiiirrccrrrcceeeenes 216
Asynchronous INPULSc.ouviiiiiii e 216
Signal INtegrity ISSUES.........cciiimiiiiiiiiiic s 217
Reference VOIAZEccouvvivviiiiiiiececec s 217
Power Supply Regulationcoiiiiiiiii e 217
Maximum Input Voltage Levels ..o 217
Decoupling CapacitancCe............covvuveeiririririiiririniieierreeseeereeee e 218

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xxifl

13
Packaging
R10000 Single-Chip Package, 599CLGA ... 220
Mechanical CharacteriSHICScvivviiieirierieereeeeere ettt et ereeere e ereeteereereere s eereerseereens 220
Electrical CRaraCteriSTiCScoieiirieerieeieeetieeiteeeiee et eeteeeteeeteeeeaeeeteeebeeeseeebeeeaseeseesaseessenseean 221
Thermal CharacteriStiCS......covuiiiriiiieeeieerie ettt eee et eeeeeae e et e eereeeteeeebeeeseeeeteesareeeseeeseean 222
Assembly Drawings and Pinout List........cccccccceeiiiiiiiiiiiiccccccceeeceeennes 222
SOICLGA PINOUL c.veevvitietecteeeecteeteete ettt ettt et ete et e eteeaeeteesseetsenseessenseeseenseenseseensenseenes 224

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

XXiv Table of Contents

14
Coprocessor 0

Index RegisSter (0).......coiiiiiiiiiiiiiiccc s 237
Random Register (1)........ccciiiiiiiiiiiiiiccececccci e 238
EntryLoO (2), and EntryLol (3) Registers........cccoouiiiiiiiiiiiiiiiicciec e 239
CONEEXE (4) cvevereenerreteteeetert ettt ettt sttt sttt b et b et b et sttt sttt sttt st et e b e b e ene 241
PageMask REGISTET (5).....c.cucuiuiuiuimiiiiiiiiiiiiiiiicccccecccie e 242
Wired Register (6)........cccoviiiiniiiiiiiiii s 243
BadVAddr Register (8)ccuiiiiiiiiiiiic s 244
Count and Compare Registers (9 and 11) ... 244
EntryHi Register (10)oooirueiiiiee e 245
Status Register (12)coiiiiiiiiiiii s 246
Status Register FIeldscccoviiiiiiiiiriiiiicc s 248
Diagnostic Status Field ... 249
Coprocessor AcCeSSIDILItYcccovviiiiiiiiiiiiiiiiii 251
Cause ReGISEr (13)c.oiuiiiiiiiiiiicceecce e 252
Exception Program Counter (14)........ooerueuoiiiiiiiiiiciec i 254
Processor Revision Identifier (PRId) Register (15) ..., 255
Config REGISLET (16).....cuiuimmiiiiiiiiiiiiiccceccc e 256
Load Linked Address (LLAddr) Register (17)cccoviiiiiiiiiiiiicccccccccce, 257
WatchLo (18) and WatchHi (19) Registers..........ccccooiiiiiiiiiiiiiiiiiicccccces 258
XContext RegiSter (20)cceuiuiiiiiiiiiiiiccceccieieeeesce e 259
FrameMask RegisSter (21).......cviiiimiiiiiiiicccncccccr e 260
Diagnostic Register (22) ... 261
Performance Counter Registers (25)cccuiiiiiiiiiiiiiciciicccceece s 264
ECC REZISEr (20)...vvviviviiiiiiiiiiiniiciciicnct it 273
CacheErr Register (27)coviiiiiiiiiiiicc s 274
CacheErr Register Format for Primary Instruction Cache Errors..........ccccccevvvveveneenene. 274
CacheErr Register Format for Primary Data Cache Errors.........ccoooovveiiiininicne 275
CacheErr Register Format for Secondary Cache Errors..........cooevoveicciiicccicieinen 276
CacheErr Register Format for System Interface Errors...........cccocovvvviivinvnnnnnene. 277
TagLo (28) and TagHi (29) ReGiStersc.coouiruiiiiiiiiiei 278
CacheOp is Index Load/Store Tagccccceeueiiiciieieiiceece s 278
Primary Instruction Cache Operation............coccceeiiiciiicccecceceeeeenenenes 279

Primary Data Cache Operation ... 279

Secondary Cache Operation ... 281

CacheOp is Index Load/Store Dataccccovuviviriririrniniiinirciccceceeeeeeeeeeas 282
Primary Instruction Cache Operation...........ccceoicieiiiiniciciiccece 282

Primary Data Cache Operation ... 283

Secondary Cache Operation ... enenenenenes 283

ErrorEPC Register (30).......coiiiiiiiiiiiiiiiiiiiincicicicnnn s 284
CPO INSEIUCHONS. ...t 285
HaAZATAS. ..o s 285

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xXxv

Branch on Coprocessor 0. 285
CPO MOVE INSEIUCEIONS ...o.evieiieeiiieeiteeieeeite et ette et esitesteesaesbeesseessaeeseesssaesssesssaesssasssaesssensessseenn 286
CACHE INSEIUCHON ...t eeteiieieeieeieetestt ettt sttt e et e e esseestesseessesseessesnsensesnsensesssensenns 287
DMECO INSEIUCEION 1.tiutiiiiitieiietieieetesteeteseeteeeetesteebesseessesssesseessesseessesseessesseessesssessesssessanssessenss 290
DMTCO INSEIUCHON 1.ttt ettt ettt ettt et e s veeseeebeestaeesae e seessseesssessseesssassseesssansseeseenn 291
ERET INSEIUCHON ..eeveeiietieieieetesee ettt ettt et et te st e et e esa et e enaessesneesseensesseensensenn 292
IMEFCO INSEIUCHON ..veuvieivietieiieeeeteeteteeteste et e ste et esteetesteessesseesseeseessesseessesssessesssessesssessenssessenssassenns 293
Move To/From the Performance COUNTETcoocuiiiiuiiiiiiieeeeieeeeeeeeeeee et eeaeeeeeaeeseaeeean 294
MTCO INSEIUCHON 1.ttt eeeie ettt ettt et st e st e et e sseessesseessesnsessesnsesesnsensesnsensesssensenns 296
TLBP INSEIUCHION. .c..ceetiiiieeieeitecieet ettt et te et este e st e ssbe e bt e s be s seessbaesssessseenssessseenseesnsesnseens 297
TLBR INSEIUCHION ..eeeitiiiieciiecite et eeteeteerte ettt e e rte et e eteesaaessbeesseesae e saessseesssessseesssasssaesssessseeseens 298
TLBWI INSEIUCHON. c...eveeieiteieeiteieeteie ettt ettt et et et e st e eseesseessesneessesnsensesnsensesssensenns 299
TLBWR INSEIUCHON ..veivieiiiiiteeieeiteeie ettt sttt e ste st e ste e st e sbe s saessbaesasessseenssessseenssesnsesnseens 300

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

XXVi Table of Contents

15
Floating-Point Unit

Floating Point Unit Operations ... 302
Floating-Point Unit CONIol.........ccooiiiiiiiiiiiiiicccccccceessce e 303
Floating-Point General Registers (FGRS)c.ccccouiiiiiiiiiiiiiciccc 303
32- and 64-Bit Operations............cccovviviviiiiiiiiininiiiii s 304

Load and Store OPerationscccoevvvriiirirnriniiirreceeereeee s 305
Floating-Point Control Registers...........cccouoviiiiiiiiiii 308
Floating-Point Implementation and Revision Registerccccccovvvinnniinnnnnnn 308
Floating-Point Status Register (FSR)..........cccovvviiiiiriniiriicccccccceccceceeaes 309

Bit Descriptions of the FSRccccooiiiiiiii 310

Loading the FSR ... 311

FPU INStIUCHONS ..ottt 312
CVT.LAML i 312

Moves and Conditional MOVEScccccvviviniiiininiiiniiiiinss 313
CECT/CTC ottt 313

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents XXVii

16
Memory Management

Processor IMOAES.........c.cuiiiiiiiiiiiicc e 316
Processor Operating MOdes............cccccuiiriiiiiiiiiiiiiiceeeeeeeeee e 316
Addressing MOAESc.cuiiuiieiiiiiicc et 317
Virtual Address SPace ..o 317
User Mode Operationscccccueueueiririririririnieeeieieieeeeeeeeeeeeeseeieseeeseeseeeeaess s eeeseeees 318

32-bit User Mode (US@E)ccorvereiiurieieiiiicieieeniete it 319

64-bit User Mode (XUSEE)ccvimiimimiiiiiiiiiiicciccs s 319
Supervisor Mode OPerationsccceueuecueiririeiiiriniririieereeeeeeeeeee e 320

32-bit Supervisor Mode, User Space (SUSEEZ)........ceceururuererriiinieieiirieieiicieie e 320

32-bit Supervisor Mode, Supervisor Space (SS€g)ceceveeuerereireemeieiiiinereeienes 321

64-bit Supervisor Mode, User Space (XSUSEE)..........cowwurmimimrieimimiirenceineeenns 321

64-bit Supervisor Mode, Current Supervisor Space (XSSeg)cccoevevrrrreuererenes 321

64-bit Supervisor Mode, Separate Supervisor Space (csseg)ccccoevvvrrrrereinnes 321

Kernel Mode Operations...........cccceueurieiiiriririreiiieieereeeeeieieeeeeieseeeeeseseeeeee e eeeseees 322
32-bit Kernel Mode, User Space (KUSeg)........cocoerueuiiiuririeiiiiinieiciiciciecceie 323

32-bit Kernel Mode, Kernel Space 0 (kseg0).........cooveerueueiiiinieieiiicieiccicieeae 323

32-bit Kernel Mode, Kernel Space 1 (KS€Z1).....cccceeueueuiuiuiiiiimiiiicieiiciccicieicicienennes 323

32-bit Kernel Mode, Supervisor Space (KSSeg).........ccoeeueriiurieieiniiicieiiiicieeae 323

32-bit Kernel Mode, Kernel Space 3 (kseg3).........cccovevmueuriniiinieieiiieieicccie e 323

64-bit Kernel Mode, User Space (XKUSEZ)........ccccvvuimiiiiiiiiiiiiiiccccceenee 324

64-bit Kernel Mode, Current Supervisor Space (XKSSeg)..........cccovrueveieirirrerennnnes 324

64-bit Kernel Mode, Physical Spaces (XKphys)ccccoeeieiiiiiniiiiiiccea 324

64-bit Kernel Mode, Kernel Space (XKSEg)........cccccvuiiiiiiiiniiiiieccccceenee 326

64-bit Kernel Mode, Compatibility Spaces (cksegl:0, cksseg, ckseg3)................ 326

Address Space Access Privilege Differences Between the R4400 and R1000.............. 326
Virtual Address Translation ... 328
Virttal Pages......c.cuovieeciiicc 328
Virtual Page Size ENcOdINgs.........ccccoiiiiiiiiiiiiiiiiiiiiccceas 328
USING the TLB ... 329
Cache Algorithm Fieldcoooiiiiii 329
Format of @ TLB ENtIY ..o 329
Address Translation.........c.coviieiiiic e 330
Address Space Identification (ASID).........cccccviiiiiiimiiiiiniin e 330
GLODaAl PrOCESSES ((3) veverveuiriiuirieirieieieieientet ettt ettt sttt ettt s 330
Avoiding TLB CONLCEcuoviviiiiiiiiiiicicicieiecceeeee e 330

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

xXxviii Table of Contents

17
CPU Exceptions

Causing and Returning from an EXCeption...........cccoiiiiiiiiiiiiiiiiiccccce, 332
Exception Vector LOCAtiONS. ..ot 332
TLB Refill Vector Selection.........coccvviiiiiiiiiiiiiiiiii e 333
Priority of EXCEPHIONScccoovviiiiiiiiiiiiiiiiiis s 335

Cold Reset EXCEPLIONcvueiiiiiiiecc s 336

Soft Reset EXCEPHONc.oviiiiiiiiiieici s 337

INMI EXCEPHION ...ttt 339
Address Error EXCEPHONccouvvviviiriiiririricicrrccce s 340

TLB EXCEPHIONS ..ottt 341

TLB Refill EXCEPHION ... 342

TLB Invalid EXCEPLIONc.viuimiiiiiiiiiiiccicccccececcce e 343

TLB Modified EXCEPHONcuoveiiiiciiciicici s 344

Cache Error EXCEPHIONc.ccvviiiiiiiiiiiiiis s 345
Virtual Coherency EXCEPLION.......cccoiiiiiiiiiiiiiiiccccccccccc e 345

Bus Error EXCEPHONccoiiiiiiiiiii s 346
Integer Overflow EXCepPHion........cccocvviiiiiiiiiiiiiiiiiiiiiccs 347

Trap EXCEPHONcviviiiiiiiic s 348
System Call EXCEPHIONcuviiiiiiiicie s 349
Breakpoint EXCEPLION........ccccoviviiiiiiiniiiiiiiii s 350
Reserved Instruction EXCEPHONccovvvviviiiiiririiiiiiirrccccrecc s 351
Coprocessor Unusable EXCEPHONcueveiiiiiiiiiii e 352
Floating-Point EXCEPHIONcccvvviviiiiiiiiiiiins 353
Watch EXCEPLIONuiiiiiiiiiiiccccccc e 354
Interrupt EXCEPHON ...cvovviiiii 355
MIPSIV INSIUCHONS ..ot e 356
COPO INSLIUCHONS «.vovvvectctctctctctctctct e 357
COPT INSLIUCHIONS .ottt 357
COP2 INSEIUCHONS ...ttt 357

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Table of Contents xxix

18
Cache Test Mode

Interface SIgNAlS.........cccoiuiiiiiiiiiiiiiiii e 360
System Interface Clock DIVISOTc.coccuiuiiiiiiiiiiiiiiiiiiicccceececcre e 360
Entering Cache Test MOde ... e 361
EXit SEQUENCE ...t 362
SYSAD(63:0) ENCOINGvvivimiiiiiiiiicieieiciccctceeeeiee e 363
Cache Test MOde PTOtOCOLccocvieieriieieieeeeceeteettete et eveettesteeaesreesaesreessesseessesssesesssessesssensenns 364

Normal WIite Protoco]l.......cuiiuiiiieiiciicieieeeee ettt ettt v et e b e e ereens 364

Auto-Increment Write ProtOCOL........cceeieieiriiieieiriceseeeet et 365

Normal Read ProtOCOL......c.ccviiieiiieieiieieieeeerte ettt eee e eae e e vesteessesseesesseessesssessesssessensns 366

Auto-Increment Read Protocolcceceeeiieieeiieiicieceeeeeeseeee ettt 367

A
Glossary

SUPETSCaAlar PrOCESSOTouiviviiiiittt et 370
PIPELINE ...t 370
PIpeline LatenCyc.c.cueuiuimimimiiiieieiciiicicicieeieee ettt 370
Pipeline Repeat Ratecoocuoiiiiiiii s 370
Out-0f-Order EXECUHIONcocvieviiiieiieeieceece ettt ettt et veeae e be s e e seessesvaesaensenns 370
Dynamic SChedUINGc.c.cciiiiiiiiiieccecee e 371
Instruction Fetch, Decode, Issue, Execution, Completion, and Graduation.............c.cc.c....... 371
B ANl s AT I T O PSR PURSR 371
Free List and Busy Re@isters.........cccccciiiiiiiiiiiiiiiiicccccceecccceeee e 372
Register RENAIMINEcccoiiiiiiiiiiiiiiiiiniii e 372
Nonblocking Loads and StOres ..o 373
Speculative Branching ... 374
Logical and Physical ReGIStersccoiruiiiiiiiiiiiiicic s 375
ReGISTET FLES ...t 375
ANDES ATCHItECHUTE.veviiieieieieieietetetee ettt sttt b et e b e s esteseesseseasaesassessessensensensens 375

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

xXxx Table of Contents

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

1. Introduction to the R10000 Processor

This user’s manual describes the R10000 superscalar microprocessor for the system
designer, paying special attention to the external interface and the transfer
protocols.

This chapter describes the following:
e MIPSISA
¢ what makes a generic superscalar microprocessor
e specifics of the R10000 superscalar microprocessor

¢ implementation-specific CPU instructions

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997 1

2 Chapter 1.

1.1 MIPS Instruction Set Architecture (ISA)

MIPS has defined an instruction set architecture (ISA), implemented in the
following sets of CPU designs:

e MIPS I, implemented in the R2000 and R3000

e MIPS II, implemented in the R6000

e MIPS III, implemented in the R4400

¢ MIPS 1V, implemented in the R8000 and R10000

The original MIPS I CPU ISA has been extended forward three times, as shown in
Figure 1-1; each extension is backward compatible. The ISA extensions are
inclusive; each new architecture level (or version) includes the former levels.t

Figure 1-1 MIPS ISA with Extensions

The practical result is that a processor implementing MIPS IV is also able to run
MIPS I, MIPS 11, or MIPS III binary programs without change.

1t For more ISA information, please refer to the MIPS IV Instruction Set Architecture,
published by MIPS Technologies, and written by Charles Price. Contact information
is provided both in the Preface, and inside the front cover, of this manual.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 3

1.2 What is a Superscalar Processor?

A superscalar processor is one that can fetch, execute and complete more than one
instruction in parallel.

Pipeline and Superpipeline Architecture

Previous MIPS processors had linear pipeline architectures; an example of such a
linear pipeline is the R4400 superpipeline, shown in Figure 1-2. In the R4400
superpipeline architecture, an instruction is executed each cycle of the pipeline
clock (PCycle), or each pipe stage.

1 Pipe

|
Instruction 4| |F IS| RF| EX| DF | DS | TC WB'

Instruction 3 IF IS| RF| EX| DF | DS | TC WB'

Instruction 2 IF IS| RF| EX| DF| DS | TC | WB

Instruction 1| IF IS| RFE| EX| DF| DS | TC | WB

Figure 1-2 R4400 Pipeline

Superscalar Architecture

The structure of 4-way superscalar pipeline is shown in Figure 1-3. At each stage,
four instructions are handled in parallel. Note that there is only one EX stage for
integers.

Instruction 1 IF 1D IS EX WB IF = instruction fetch
Instruction 2 IF D IS EX WB ID = instruction decode and dependency
IS = instruction issue

Instruction 3 IF ID IS EX wB
l;l; EX = execution (1 only)
Instruction 4 IF ID IS EX wB WB = write back

Instruction 5 IF ID IS EX WB
Instruction 6 IF ID IS EX WB
Instruction 7 IF ID IS EX WB
Instruction 8 IF ID IS EX wB

Figure 1-3 4-Way Superscalar Pipeline

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

Chapter 1.

1.3 What is an R10000 Microprocessor?

The R10000 processor is a single-chip superscalar RISC microprocessor that is a
follow-on to the MIPS RISC processor family that includes, chronologically, the
R2000, R3000, R6000, R4400, and R8000.

The R10000 processor uses the MIPS ANDES architecture, or Architecture with Non-
sequential Dynamic Execution Scheduling.

FErrata

Version 2.0 of January 29, 1997

The R10000 processor has the following major features (terms in bold are defined
in the Glossary):

it implements the 64-bit MIPS IV instruction set architecture (ISA)

it can decode four instructions each pipeline cycle, appending them to
one of three instruction queues

it has five execution pipelines connected to separate internal integer and
floating-point execution (or functional) units

it uses dynamic instruction scheduling and out-of-order execution

it uses speculative instruction issue (also termed “speculative
branching”)

it uses a precise exception model (exceptions can be traced back to the
instruction that caused them)

it uses non-blocking caches
it has separate on-chip 32-Kbyte primary instruction and data caches

it has individually-optimized secondary cache and System interface
ports

it has an internal controller for the external secondary cache

it has an internal System interface controller with multiprocessor
support

The R10000 processor is implemented using 0.35-micron CMOS VLSI circuitry on
a single 17 mm-by-18 mm chip that contains about 6.7 million transistors,
including about 4.4 million transistors in its primary caches.

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor

R10000 Superscalar Pipeline

The R10000 superscalar processor fetches and decodes four instructions in parallel
each cycle (or pipeline stage). Each pipeline includes stages for fetching (stage 1
in Figure 1-4), decoding (stage 2) issuing instructions (stage 3), reading register

operands (stage 3), executing instructions (stages 4 through 6), and storing results

(stage 7).
7 Pipeline Stages
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7
Fetch Decode Issue Execute Execute Execute Store
TN\
(FPAddPipeline (| |ssye | RE | FAdd-1 FAdd - 2 FAdd-3 |Result
FP . .
(FP Queue) Floating-Point Queue
FP Multiply Pipeline | | |ssye [rF FMpy -1 FMpy - 2 FMpy -3 [Result and Registers
(FP Queue)
5
o N
Execution < Integer ALU Pipeline | [0 | rr ALU1 Result
S (Integer Queue)
Pipelines
Integer ALU Pipeline
g (Integer Q?Jeue) Issue [RF ALU2 Result > Integer Register Operands
Load/Store Pipeline | | jssye Addr.Calc' | Data Cache |Result
\ (Address Queue)
Queues 2-way Interleaved Cache
Ak _ _
Instruction Fetch Pipeline Read operands from Floating-Point Translation-Lookaside Buffer
or Integer Register Files

Decode

Primary
Instruction
Cache

Branch Unit B Branch Address (one branch can be handled each cycle)

4 Instruction/Cycle Fetch and Decode Functional Units (Execute Instruction)

Figure 1-4 Superscalar Pipeline Architecture in the R10000

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

6 Chapter 1.

Instruction Queues

As shown in Figure 1-4, each instruction decoded in stage 2 is appended to one of
three instruction queues:

* integer queue
® address queue

¢ floating-point queue

Execution Pipelines

The three instruction queues can issue (see the Glossary for a definition of issue)
one new instruction per cycle to each of the five execution pipelines:

* the integer queue issues instructions to the two integer ALU pipelines

® the address queue issues one instruction to the Load/Store Unit
pipeline

* the floating-point queue issues instructions to the floating-point adder
and multiplier pipelines

A sixth pipeline, the fetch pipeline, reads and decodes instructions from the
instruction cache.

64-bit Integer ALU Pipeline

The 64-bit integer pipeline has the following characteristics:

¢ it has a 16-entry integer instruction queue that dynamically issues
instructions

¢ it has a 64-bit 64-location integer physical register file, with seven read
and three write ports (32 logical registers; see register renaming in the
Glossary)

¢ it has two 64-bit arithmetic logic units:

- ALU1 contains an arithmetic-logic unit, shifter, and integer
branch comparator

- ALU2 contains an arithmetic-logic unit, integer multiplier, and
divider

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor

Load/Store Pipeline

The load/store pipeline has the following characteristics:

it has a 16-entry address queue that dynamically issues instructions,
and uses the integer register file for base and index registers

it has a 16-entry address stack for use by non-blocking loads and
stores

it has a 44-bit virtual address calculation unit

it has a 64-entry fully associative Translation-Lookaside Buffer (TLB),
which converts virtual addresses to physical addresses, using a 40-bit
physical address. Each entry maps two pages, with sizes ranging from
4 Kbytes to 16 Mbytes, in powers of 4.

64-bit Floating-Point Pipeline

The 64-bit floating-point pipeline has the following characteristics:

it has a 16-entry instruction queue, with dynamic issue

it has a 64-bit 64-location floating-point physical register file, with five
read and three write ports (32 logical registers)

it has a 64-bit parallel multiply unit (3-cycle pipeline with 2-cycle
latency) which also performs move instructions

it has a 64-bit add unit (3-cycle pipeline with 2-cycle latency) which
handles addition, subtraction, and miscellaneous floating-point
operations

it has separate 64-bit divide and square-root units which can operate

concurrently (these units share their issue and completion logic with
the floating-point multiplier)

A block diagram of the processor and its interfaces is shown in Figure 1-5,
followed by a description of its major logical blocks.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

8 Chapter 1.

o
§ “—> Up to 4 R10000 Microprocessors may be directly connected. 4—>» Secondary Cache
:
S 4 <
X
] = SC Address
é o > System Interface Secondary Cache Ctlr 19+way
g 22| v
cC .= I
SS| £ 128-Dit refil T28-bit refill or writeback | 4——2
<3 § Instruction Cache Data Cache 26+7 -
§ O 2 32 Kbytes 32 Kbytes
59 ﬁ 2-way Set Associative 2-way Set Associative Dat
it A ata
5 3 g 16-word blocks 2 Banks < >
(@) £ Unaligned access 8-word blocks 128+10
©| 35
o Addr__Four 32-bit instr. fetch Addr___ 64-bit load or store
o]
ks > : Secondary Cache
2 » Switch (512 Kbytes to 16 Mbytes)
2 Synchronous Static RAM
3 IVVVY s o)
0 4-Mbyte cache requires
2] - _’ P N
2 = pAddress|e TLB ten 256Kx18-bit
c) —_: Queue | T RAM chips)
N —p
173 -
> o () — Y
o c|llo@ o
s13c o Adr.Calc.
al[ge % S
(el —» S ALU1
S Integer 3 &)
2% Queue| 3 ALU2
R
5.2
a1l %8
x| 2x SO le—
S||= Bg
) > Fp [PE2 Adder
i =2
< @ .
> Queue —»{ O Multiplier

R10000

Figure 1-5 Block Diagram of the R10000 Processor

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor

Functional Units

The five execution pipelines allow overlapped instruction execution by issuing
instructions to the following five functional units:

two integer ALUs (ALU1 and ALU2)
the Load/Store unit (address calculate)
the floating-point adder

the floating-point multiplier

There are also three “iterative” units to compute more complex results:

Integer multiply and divide operations are performed by an Integer
Multiply /Divide execution unit; these instructions are issued to ALU2.
ALU2 remains busy for the duration of the divide.

Floating-point divides are performed by the Divide execution unit;
these instructions are issued to the floating-point multiplier.

Floating-point square root are performed by the Square-root execution
unit; these instructions are issued to the floating-point multiplier.

Primary Instruction Cache (I-cache)

The primary instruction cache has the following characteristics:

Primary Data Cache (D-cache)

it contains 32 Kbytes, organized into 16-word blocks, is 2-way set
associative, using a least-recently used (LRU) replacement algorithm

it reads four consecutive instructions per cycle, beginning on any
word boundary within a cache block, but cannot fetch across a block
boundary.

its instructions are predecoded, its fields are rearranged, and a 4-bit
unit select code is appended

it checks parity on each word

it permits non-blocking instruction fetch

The primary data cache has the following characteristics:

MIPS R10000 Microprocessor User’s Manual

it has two interleaved arrays (two 16 Kbyte ways)

it contains 32 Kbytes, organized into 8-word blocks, is 2-way set
associative, using an LRU replacement algorithm.

it handles 64-bit load /store operations
it handles 128-bit refill or write-back operations
it permits non-blocking loads and stores

it checks parity on each byte

Version 2.0 of January 29, 1997

10 Chapter 1.

Instruction Decode And Rename Unit

The instruction decode and rename unit has the following characteristics:
® it processes 4 instructions in parallel

* it replaces logical register numbers with physical register numbers
(register renaming)

- it maps integer registers into a 33-word-by-6-bit mapping table
that has 4 write and 12 read ports

- it maps floating-point registers into a 32-word-by-6-bit mapping
table that has 4 write and 16 read ports

e it has a 32-entry active list of all instructions within the pipeline.

Branch Unit
The branch unit has the following characteristics:
* it allows one branch per cycle
* conditional branches can be executed speculatively, up to 4-deep
® it has a 44-bit adder to compute branch addresses
e it has a 4-quadword branch-resume buffer, used for reversing
mispredicted speculatively-taken branches
Errata

¢ the Branch Return Cache contains four instructions following a
subroutine call, for rapid use when returning from leaf subroutines

® it has program trace RAM that stores the program counter for each
instruction in the pipeline

External Interfaces

The external interfaces have the following characteristics:

® a 64-bit System interface allows direct-connection for 2-way to
4-way multiprocessor systems. 8-bit ECC Error Check and Correction
is made on address and data transfers.

e asecondary cache interface with 128-bit data path and tag fields. 9-bit
ECC Error Check and Correction is made on data quadwords, 7-bit
ECC is made on tag words. It allows connection to an external
secondary cache that can range from 512 Kbytes to 16 Mbytes, using
external static RAMs. The secondary cache can be organized into
either 16- or 32-word blocks, and is 2-way set associative.

Bit definitions are given in Chapter 3.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 11

1.4 Instruction Queues

The processor keeps decoded instructions in three instruction queues, which
dynamically issue instructions to the execution units. The queues allow the
processor to fetch instructions at its maximum rate, without stalling because of
instruction conflicts or dependencies.

Each queue uses instruction tags to keep track of the instruction in each execution
pipeline stage. These tags set a Done bit in the active list as each instruction is
completed.

Integer Queue

The integer queue issues instructions to the two integer arithmetic units: ALU1
and ALU2.

The integer queue contains 16 instruction entries. Up to four instructions may be
written during each cycle; newly-decoded integer instructions are written into
empty entries in no particular order. Instructions remain in this queue only until
they have been issued to an ALU.

Branch and shift instructions can be issued only to ALU1. Integer multiply and
divide instructions can be issued only to ALU2. Other integer instructions can be
issued to either ALU.

The integer queue controls six dedicated ports to the integer register file: two
operand read ports and a destination write port for each ALU.

Floating-Point Queue

The floating-point queue issues instructions to the floating-point multiplier and
the floating-point adder.

The floating-point queue contains 16 instruction entries. Up to four instructions
may be written during each cycle; newly-decoded floating-point instructions are
written into empty entries in random order. Instructions remain in this queue
only until they have been issued to a floating-point execution unit.

The floating-point queue controls six dedicated ports to the floating-point register
file: two operand read ports and a destination port for each execution unit.

The floating-point queue uses the multiplier’s issue port to issue instructions to
the square-root and divide units. These instructions also share the multiplier’s
register ports.

The floating-point queue contains simple sequencing logic for multiple-pass
instructions such as Multiply-Add. These instructions require one pass through
the multiplier, then one pass through the adder.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

12

Address Queue

Version 2.0 of January 29, 1997

Chapter 1.

The address queue issues instructions to the load/store unit.

The address queue contains 16 instruction entries. Unlike the other two queues,
the address queue is organized as a circular First-In First-Out (FIFO) buffer. A
newly decoded load/store instruction is written into the next available sequential
empty entry; up to four instructions may be written during each cycle.

The FIFO order maintains the program’s original instruction sequence so that
memory address dependencies may be easily computed.

Instructions remain in this queue until they have graduated; they cannot be
deleted immediately after being issued, since the load/store unit may not be able
to complete the operation immediately.

The address queue contains more complex control logic than the other queues. An
issued instruction may fail to complete because of a memory dependency, a cache
miss, or a resource conflict; in these cases, the queue must continue to reissue the
instruction until it is completed.

The address queue has three issue ports:

e First, it issues each instruction once to the address calculation unit.
This unit uses a 2-stage pipeline to compute the instruction’s memory
address and to translate it in the TLB. Addresses are stored in the
address stack and in the queue’s dependency logic. This port controls
two dedicated read ports to the integer register file. If the cache is
available, it is accessed at the same time as the TLB. A tag check can be
performed even if the data array is busy.

® Second, the address queue can re-issue accesses to the data cache. The
queue allocates usage of the four sections of the cache, which consist of
the tag and data sections of the two cache banks. Load and store
instructions begin with a tag check cycle, which checks to see if the
desired address is already in cache. If it is not, a refill operation is
initiated, and this instruction waits until it has completed. Load
instructions also read and align a doubleword value from the data
array. This access may be either concurrent to or subsequent to the tag
check. If the data is present and no dependencies exist, the instruction
is marked done in the queue.

¢ Third, the address queue can issue store instructions to the data cache.
A store instruction may not modify the data cache until it graduates.
Only one store can graduate per cycle, but it may be anywhere within
the four oldest instructions, if all previous instructions are already
completed.

The access and store ports share four register file ports (integer read and write,
floating-point read and write). These shared ports are also used for Jump and Link
and Jump Register instructions, and for move instructions between the integer and
register files.

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 13

1.5 Program Order and Dependencies

From a programmer’s perspective, instructions appear to execute sequentially,
since they are fetched and graduated in program order (the order they are
presented to the processor by software). When an instruction stores a new value
in its destination register, that new value is immediately available for use by
subsequent instructions.

Internal to the processor, however, instructions are executed dynamically, and
some results may not be available for many cycles; yet the hardware must behave
as if each instruction is executed sequentially.

This section describes various conditions and dependencies that can arise from
them in pipeline operation, including;

* instruction dependencies

* execution order and stalling

e branch prediction and speculative execution
* resolving operand dependencies

* resolving exception dependencies

Instruction Dependencies

Each instruction depends on all previous instructions which produced its
operands, because it cannot begin execution until those operands become valid.
These dependencies determine the order in which instructions can be executed.

Execution Order and Stalling

The actual execution order depends on the processor’s organization; in a typical
pipelined processor, instructions are executed only in program order. That is, the
next sequential instruction may begin execution during the next cycle, if all of its
operands are valid. Otherwise, the pipeline stalls until the operands do become
valid.

Since instructions execute in order, stalls usually delay all subsequent
instructions.

A clever compiler can improve performance by re-arranging instructions to
reduce the frequency of these stall cycles.

e In an in-order superscalar processor, several consecutive instructions may
begin execution simultaneously, if all their operands are valid, but the
processor stalls at any instruction whose operands are still busy.

* In an out-of-order superscalar processor, such as the R10000, instructions
are decoded and stored in queues. Each instruction is eligible to begin
execution as soon as its operands become valid, independent of the
original instruction sequence. In effect, the hardware rearranges
instructions to keep its execution units busy. This process is called
dynamic issuing.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

14

Chapter 1.

Branch Prediction and Speculative Execution

‘Errata

Although one or more instructions may begin execution during each cycle, each
instruction takes several (or many) cycles to complete. Thus, when a branch
instruction is decoded, its branch condition may not yet be known. However, the
R10000 processor can predict whether the branch is taken, and then continue
decoding and executing subsequent instructions along the predicted path.

When a branch prediction is wrong, the processor must back up to the original
branch and take the other path. This technique is called speculative execution.
Whenever the processor discovers a mispredicted branch, it aborts all
speculatively-executed instructions and restores the processor’s state to the state it
held before the branch. However, the cache state is not restored (see the section
titled “Side Effects of Speculative Execution”).

Branch prediction can be controlled by the CP0 Diagnostic register. Branch Likely
instructions are always predicted as taken, which also means the instruction in the
delay slot of the Branch Likely instruction will always be speculatively executed.
Since the branch predictor is neither used nor updated by branch-likely
instructions, these instructions do not affect the prediction of “normal” conditional
branches.

Resolving Operand Dependencies

Version 2.0 of January 29, 1997

Operands include registers, memory, and condition bits. Each operand type has
its own dependency logic. In the R10000 processor, dependencies are resolved in
the following manner:

e register dependencies are resolved by using register renaming and the
associative comparator circuitry in the queues

* memory dependencies are resolved in the Load/Store Unit

e condition bit dependencies are resolved in the active list and
instruction queues

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 15

Resolving Exception Dependencies

In addition to operand dependencies, each instruction is implicitly dependent
upon any previous instruction that generates an exception. Exceptions are caused
whenever an instruction cannot be properly completed, and are usually due to
either an untranslated virtual address or an erroneous operand.

The processor design implements precise exceptions, by:
¢ identifying the instruction which caused the exception
e preventing the exception-causing instruction from graduating

* aborting all subsequent instructions

Thus, all register values remain the same as if instructions were executed singly.
Effectively, all previous instructions are completed, but the faulting instruction
and all subsequent instructions do not modify any values.

Strong Ordering

A multiprocessor system that exhibits the same behavior as a uniprocessor system
in a multiprogramming environment is said to be strongly ordered.

The R10000 processor behaves as if strong ordering is implemented, although it
does not actually execute all memory operations in strict program order.

In the R10000 processor, store operations remain pending until the store
instruction is ready to graduate. Thus, stores are executed in program order, and
memory values are precise following any exception.

For improved performance however, cached load operations my occur in any
order, subject to memory dependencies on pending store instructions. To
maintain the appearance of strong ordering, the processor detects whenever the
reordering of a cached load might alter the operation of the program, backs up,
and then re-executes the affected load instructions. Specifically, whenever a
primary data cache block is invalidated due to an external coherency request, its
index is compared with all outstanding load instructions. If there is a match and
the load has been completed, the load is prevented from graduating. When it is
ready to graduate, the entire pipeline is flushed, and the processor is restored to
the state it had before the load was decoded.

An uncached or uncached accelerated load or store instruction is executed when
the instruction is ready to graduate. This guarantees strong ordering for
uncached accesses.

Since the R10000 processor behaves as if it implemented strong ordering, a
suitable system design allows the processor to be used to create a shared-memory
multiprocessor system with strong ordering.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

16

An Example of Strong Ordering

Version 2.0 of January 29, 1997

Chapter 1.

Given thatlocations X and Y have no particular relationship—that is, they are not
in the same cache block—an example of strong ordering is as follows:

® Processor A performs a store to location X and later executes a load

from location Y.

® Processor B performs a store to location Y and later executes a load
from location X.

The two processors are running asynchronously, and the order of the above two

sequences is unknown.

For the system to be strongly ordered, either processor A must load the new value
of Y, or processor B must load the new value of X, or both processors A and B must
load the new values of Y and X, respectively, under all conditions.

If processors A and B both load old values of Y and X, respectively, under any
conditions, the system is not strongly ordered.

New Value Strongly
Processor A Processor B Ordered
No No No
Yes No Yes
No Yes Yes
Yes Yes Yes

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor

1.6 R10000 Pipelines

Stage 1

Stage 2

17

This section describes the stages of the superscalar pipeline.

Instructions are processed in six partially-independent pipelines, as shown in
Figure 1-4. The Fetch pipeline reads instructions from the instruction cache’,
decodes them, renames their registers, and places them in three instruction
queues. The instruction queues contain integer, address calculate, and floating-
point instructions. From these queues, instructions are dynamically issued to the
five pipelined execution units.

In stage 1, the processor fetches four instructions each cycle, independent of their
alignment in the instruction cache — except that the processor cannot fetch across
a 16-word cache block boundary. These words are then aligned in the 4-word
Instruction register.

If any instructions were left from the previous decode cycle, they are merged with
new words from the instruction cache to fill the Instruction register.

In stage 2, the four instructions in the Instruction register are decoded and
renamed. (Renaming determines any dependencies between instructions and
provides precise exception handling.) When renamed, the logical registers
referenced in an instruction are mapped to physical registers. Integer and floating-
point registers are renamed independently.

A logical register is mapped to a new physical register whenever that logical
register is the destination of an instruction. Thus, when an instruction places a
new value in a logical register, that logical register is renamed (mapped) to a new
physical register, while its previous value is retained in the old physical register.

As each instruction is renamed, its logical register numbers are compared to
determine if any dependencies exist between the four instructions decoded
during this cycle. After the physical register numbers become known, the
Physical Register Busy table indicates whether or not each operand is valid. The
renamed instructions are loaded into integer or floating-point instruction queues.

Only one branch instruction can be executed during stage 2. If the instruction
register contains a second branch instruction, this branch is not decoded until the
next cycle.

The branch unit determines the next address for the Program Counter; if a branch
is taken and then reversed, the branch resume cache provides the instructions to
be decoded during the next cycle.

t The processor checks only the instruction cache during an instruction fetch; it does
not check the data cache.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

18 Chapter 1.

Stage 3

In stage 3, decoded instructions are written into the queues. Stage 3 is also the start
of each of the five execution pipelines.

Stages 4-6

In stages 4 through 6, instructions are executed in the various functional units.
These units and their execution process are described below.

Floating-Point Multiplier (3-stage Pipeline)

Single- or double-precision multiply and conditional move operations are
executed in this unit with a 2-cycle latency and a 1-cycle repeat rate. The
multiplication is completed during the first two cycles; the third cycle is used to
pack and transfer the result.

Floating-Point Divide and Square-Root Units

Single- or double-precision division and square-root operations can be executed in
parallel by separate units. These units share their issue and completion logic with
the floating-point multiplier.

Floating-Point Adder (3-stage Pipeline)

Single- or double-precision add, subtract, compare, or convert operations are
executed with a 2-cycle latency and a 1-cycle repeat rate. Although a final result is
not calculated until the third pipeline stage, internal bypass paths set a 2-cycle
latency for dependent add or multiply instructions.

Integer ALU1 (1-stage Pipeline)

Integer add, subtract, shift, and logic operations are executed with a 1-cycle latency
and a 1-cycle repeat rate. This ALU also verifies predictions made for branches
that are conditional on integer register values.

Integer ALU2 (1-stage Pipeline)

Integer add, subtract, and logic operations are executed with a 1-cycle latency and
a 1-cycle repeat rate. Integer multiply and divide operations take more than one
cycle.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 19

Address Calculation and Translation in the TLB

A single memory address can be calculated every cycle for use by either an integer
or floating-point load or store instruction. Address calculation and load
operations can be calculated out of program order.

Errata

The calculated address is translated from a 44-bit virtual address into a 40-bit
physical address using a translation-lookaside buffer. The TLB contains 64
entries, each of which can translate two pages. Each entry can select a page size
ranging from 4 Kbytes to 16 Mbytes, inclusive, in powers of 4, as shown in Figure
1-6.

Exponent 212 214 216 218 220 222 224
Page Size | 4 Kbytes J| 16 Kbytes I 64 Kbytes I 256 Kbytes 1 Mbyte I 4 Mbytes I 16 MbytesI
Virtual address VA(11) VA(13) VA(15) VA(17) VA(19) VA(21) VA(23)
Figure 1-6 TLB Page Sizes

Load instructions have a 2-cycle latency if the addressed data is already within the
data cache.

Store instructions do not modify the data cache or memory until they graduate.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

20 Chapter 1.

1.7 Implications of R10000 Microarchitecture on Software

The R10000 processor implements the MIPS architecture by using the following
techniques to improve throughput:

e superscalar instruction issue
* speculative execution

* non-blocking caches

These microarchitectural techniques have special implications for compilation and
code scheduling.

Superscalar Instruction Issue

The R10000 processor has parallel functional units, allowing up to four
instructions to be fetched and up to five instructions to be issued or completed
each cycle. An ideal code stream would match the fetch bandwidth of the
processor with a mix of independent instructions to keep the functional units as
busy as possible.

To create this ideal mix, every cycle the hardware would select one instruction
from each of the columns below. (Floating-point divide, floating-point square
root, integer multiply and integer divide cannot be started on each cycle.) The
processor can look ahead in the code, so the mix should be kept close to the ideal
described below.

Version 2.0 of January 29, 1997

Column A | Column B Column C Column D Column E
FPadd FP mul FPload add/sub add/sub
FPdiv FPstore shift mul
FPsqrt load branch div
store logical logical

Data dependencies are detected in hardware, but limit the degree of parallelism
that can be achieved. Compilers can intermix instructions from independent code

streams.

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 21

Speculative Execution

Speculative execution increases parallelism by fetching, issuing, and completing
instructions even in the presence of unresolved conditional branches and possible
exceptions. Following are some suggestions for increasing program efficiency:

e Compilers should reduce the number of branches as much as possible
¢ “Jump Register” instructions should be avoided.

* Aggressive use of the new integer and floating point conditional move
instructions is recommended.

* Branch prediction rates may be improved by organizing code so that
each branch goes the same direction most of the time, since a branch
that is taken 50% of the time has higher average cost than one taken
90% of the time. The MIPS IV conditional move instructions may be
effective in improving performance by replacing unpredictable
branches.

Errata

Side Effects of Speculative Execution

To improve performance, R10000 instructions can be speculatively fetched and
executed. Side-effects are harmless in cached coherent operations; however there
are potential side-effects with non-coherent cached operations. These side-effects
are described in the sections that follow.

Speculatively fetched instructions and speculatively executed loads or stores to a
cached address initiate a Processor Block Read Request to the external interface if it
misses in the cache. The speculative operation may modify the cache state and/
or data, and this modification may not be reversed even if the speculation turns
out to be incorrect and the instruction is aborted.

Speculative Processor Block Read Request to an I/O Address

Accesses to I/O addresses often cause side-effects. Typically, such I/O addresses
are mapped to an uncached region and uncached reads and writes are made as
double/single /partial-word reads and writes (non-block reads and writes) in
R10000. Uncached reads and writes are guaranteed to be non-speculative.

However, if R10000 has a “garbage” value in a register, a speculative block read
request to an unpredictable physical address can occur, if it speculatively fetches
data due to a Load or Jump Register instruction specifying this register. Therefore,
speculative block accesses to load-sensitive I/O areas can present an unwanted
side-effect.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

22

Chapter 1.

Unexpected Write Back Due to Speculative Store Instruction

When a Store instruction is speculated and the target address of the speculative
Store instruction is missing in the cache, the cache line is refilled and the state is
marked to be Dirty. However the refilled data may not be actually changed in the
cache if this store instruction is later aborted. This could present a side-effect in
cases such as the one described below:

o The processor is storing data sequentially to memory area A, using a
code-loop that includes Store and Cond.branch instructions.

e A DMA write operation is performed to memory area B.

e DMA area B is contiguous to the sequential storage area A.

¢ The DMA operation is noncoherent.

® The processor does not cache any lines of DMA area B.

If the processor and the DMA operations are performed in sequence, the following
could occur:

1. Due to speculative execution at the exit of the code-loop, the line of data
beyond the end of the memory area A — that is, the starting line of memory
area B — is refilled to the cache. This cache line is then marked Dirty.

[N

The DMA operation starts writing noncoherent data into memory area B.

|

A cache line replacement is caused by later activities of the processor, in which
the cache line is written back to the top of area B. Thus, the first line of the
DMA area B is overwritten by old cache data, resulting in incorrect DMA
operation and data.

The OS can restrict the writable pages for each user process and so can prevent a
user process from interfering with an active DMA space. The kernel, on the other
hand, retains xkphys and kseg0 addresses in registers. There is no write protection
against the speculative use of the address values in these registers. User processes
which have pages mapped to physical spaces not in RAM may also have side-
effects. These side-effects can be avoided if DMA is coherent.

Speculative Instruction Fetch

Version 2.0 of January 29, 1997

The change in a cache line’s state due to a speculative instruction fetch is not
reversed if the speculation is aborted. This does not cause any problems visible to
the program except during a noncoherent memory operation. Then the following
side-effect exists: if a noncoherent line is changed to Clean Exclusive and this line is
also present in noncoherent space, the noncoherent data could be modified by an
external component and the processor would then have stale data.

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor

23

Workarounds for Noncoherent Cached Systems

The suggestions presented below are not exhaustive; the solutions and trade-offs

are system dependent. Any one or more of the items listed below might be

suitable in a particular system, and testing and simulations should be used to

verify their efficacy.

1.

2

|«

|e

Sd

The external agent can reject a processor block read request to any I1/0O location
in which a speculative load would cause an undesired affect. Rejection is
made by returning an external NACK completion response.

A serializing instruction such as a cache barrier or a CP0 instruction can be used
to prevent speculation beyond the point where speculative stores are allowed
to occur. This could be at the beginning of a basic block that includes
instructions that can cause a store with an unsafe pointer. (Stores to addresses
like stack-relative, global-pointer-relative and pointers to non-1/O memory
might be safe.) Speculative loads can also cause a side-effect. To make sure
there is no stale data in the cache as a result of undesired speculative loads,
portions of the cache referred by the address of the DMA read buffers could
be flushed after every DMA transfer from the I/O devices.

Make references to appropriate I/0 spaces uncached by changing the cache
coherency attribute in the TLB.

Generally, arbitrary accesses can be controlled by mapping selected addresses
through the TLB. However, references to an unmapped cached xkphys region
could have hazardous affects on I/O. A solution for this is given below:

First of all, note that the xkphys region is hard-wired into cached and uncached
regions, however the cache attributes for the kse¢0 region are programmed
through the Config register. Therefore, clear the KX bit (to a zero) and set (to
ones) the SX and UX bits in the Status register. This disables access to the
xkphys region and restricts access to only the User and Supervisor portions of
the 64-bit address space.

In general, the system needs either a coherent or a noncoherent protocol —
but not both. Therefore these cache attributes can be used by the external
hardware to filter accesses to certain parts of the kse¢0 region. For instance, the
cache attributes for the kse¢0 address space might be defined in the Config
register to be cache coherent while the cache attributes in the TLB for the rest of
virtual space are defined to be cached-noncoherent or uncached. The external
hardware could be designed to reject all cache coherent mode references to the
memory except to that prior-defined safe space in kseg0 within which there is
no possibility of an I/O DMA transfer. Then before the DMA read process
and before the cache is flushed for the DMA read buffers, the cache attributes
in the TLB for the I/O buffer address space are changed from noncoherent to
uncached. After the DMA read, the access modes are returned to the cached-
noncoherent mode.

Just before load /store instruction, use a conditional move instruction which
tests for the reverse condition in the speculated branch, and make all aborted
branch assignments safe. An example is given below:

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

24 Chapter 1.

bne rl, r0, label

movn ra, ro, r1 # test to see if r1 1= 0; if r1 = 0 then branch
is mispredicted; move safe address (r0)
#into ra

Id r4, 0 (ra) # Without the previous movn, this Iid

could create damaging read.

In the above example, without the MOVN the read to the address in register
ra could be speculatively executed and later aborted. It is possible that this
load could be premature and thus damaging. The MOVN guarantees that if
there is a misprediction (r1 is not equal to 0) ra will be loaded with an address
to which a read will not be damaging.

o

The following is similar to the conditional-move example given above, in that
it protects speculation only for a single branch, but in some instances it may be
more efficient than either the conditional move or the cache barrier
workarounds.

This workaround uses the fact that branch-likely instructions are always
predicted as taken by the R10000. Thus, any incorrect speculation by the
R10000 on a branch-likely always occurs on a taken path. Sample code is:

beq| rx, rl, label
nop
sw r2, 0x0(rl)

The store to #1 will never be to an address referred to by the content of rx,
because the store will never be executed speculatively. Thus, the address
referred to by the content of rx is protected from any spurious write-backs.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 25

This workaround is most useful when the branch is often taken, or when there
are few instructions in the protected block that are not memory operations.
Note that no instructions in a block following a branch-likely will be initiated
by speculation on that branch; however, in the case of a serial instruction
workaround, only memory operations are prevented from speculative
initiation. In the case of the conditional-move workaround, speculative
initiation of all instructions continues unimpeded. Also, similar to the
conditional-move workaround, this workaround only protects fall-through
blocks from speculation on the immediately preceding branch. Other
mechanisms must be used to ensure that no other branches speculate into the
protected block. However, if a block that dominates® the fall-through block can
be shown to be protected, this may be sufficient. Thus, if block (a) dominates
block (b), and block (b) is the fall-through block shown above, and block (a) is
the immediately previous block in the program (i.e., only the single
conditional branch that is being replaced intervenes between (a) and (b)), then
ensuring that (a) is protected by serial instruction means a branch-likely can
safely be used as protection for (b).

Nonblocking Caches

As processor speed increases, the processor’s data latency and bandwidth
requirements rise more rapidly than the latency and bandwidth of cost-effective
main memory systems. The memory hierarchy of the R10000 processor tries to
minimize this effect by using large set-associative caches and higher bandwidth
cache refills to reduce the cost of loads, stores, and instruction fetches. Unlike the
R4400, the R10000 processor does not stall on data cache misses, instead defers
execution of any dependent instructions until the data has been returned and
continues to execute independent instructions (including other memory
operations that may miss in the cache). Although the R10000 allows a number of
outstanding primary and secondary cache misses, compilers should organize
code and data to reduce cache misses. When cache misses are inevitable, the data
reference should be scheduled as early as possible so that the data can be fetched
in parallel with other unrelated operations.

As a further antidote to cache miss stalls, the R10000 processor supports prefetch
instructions, which serve as hints to the processor to move data from memory into
the secondary and primary caches when possible. Because prefetches do not
cause dependency stalls or memory management exceptions, they can be
scheduled as soon as the data address can be computed, without affecting
exception semantics. Indiscriminate use of prefetch instructions can slow
program execution because of the instruction-issue overhead, but selective use of
prefetches based on compiler miss prediction can yield significant performance
improvement for dense matrix computations.

1 In compiler parlance, block (a) dominates block (b) if and only if every time block (b)
is executed, block (a) is executed first. Note that block (a) does not have to
immediately precede block (b) in execution order; some other block may intervene.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

26

Chapter 1.

1.8 R10000-Specific CPU Instructions

PREF

Version 2.0 of January 29, 1997

This section describes the processor-specific implementations of the following
instructions:

e PREF
e LL/SC
e SYNC

Chapter 14, the section titled “CPO0 Instructions,” describes the CP0-specific
instructions, and Chapter 15, the section titled “FPU Instructions,” describes the
FPU-specific instructions.

In the R1000 processor, the Prefetch instruction, PREF, attempts to fetch data into
the secondary and primary data caches. The action taken by a Prefetch instruction
is controlled by the instruction hint field, as decoded in Table 1-1.

Table 1-1 PREF Instruction Hint Field

Hint Value Name of Hint Action Taken
0 Load Prefetch data into cache LRU way
1 Store Prefetch data into cache LRU way
2-3 undefined
load_streamed Prefetch data into cache way 0
store_streamed Prefetch data into cache way 0
load_retained Prefetch data into cache way 1
store_retained Prefetch data into cache way 1
8-31 undefined

For a “store” Prefetch, an Exclusive copy of the cache block must be obtained, in
order that it may be written.

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 27

LL/SC
Load Linked and Store Conditional instructions are used together to implement a
memory semaphore. Each LL/SC sequence has three sections:
1. The LL loads a word from memory.

2. A short sequence of instructions checks or modifies this word. This sequence

must not contain any of the events listed below, or the Store Conditional will
fail:

* exception

e execution of ERET
¢ load instruction

e store instruction

e SYNC instruction

e CACHE instruction
e PREF instruction

* external intervention exclusive or invalidate to the secondary cache
block containing the linked address

3. The SC stores a new value into the memory word, unless the new value has
been modified. If the word has not been modified, the store succeeds and a 1
is stored in the destination register. Otherwise the Store Conditional fails,
memory is not modified, and a 0 is loaded into the destination register. Since
the instruction format has only a single field to select a data register (rt), this
destination register is the same as the register which was stored.

Load Linked and Store Conditional instructions (LL, LLD, SC, and SCD) do not
implicitly perform SYNC operations in the R10000 processor.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

28

SYNC

1.9 Performance

Version 2.0 of January 29, 1997

Chapter 1.

The SYNC instruction is implemented in a “lightweight” manner: after decoding
a SYNC instruction, the processor continues to fetch and decode further
instructions. It is allowed to issue load and store instructions speculatively and
out-of-order, following a SYNC.

The R10000 processor only allows a SYNC instruction to graduate when the
following conditions are met:

e all previous instructions have been successfully completed
* the uncached buffer does not contain any uncached stores

e the address cycle of a processor double/single/partial-word write
request resulting from an uncached store was not issued to the System
interface in any of the prior three SysClk cycles

¢ the SysGblPerf* signal is asserted

A SYNC instruction is not prevented from graduating if the uncached buffer
contains any uncached accelerated stores.

As it executes programs, the R10000 superscalar processor performs many
operations in parallel. Instructions can also be executed out of order. Together,
these two facts greatly improve performance, but they also make it difficult to
predict the time required to execute any section of a program, since it often
depends on the instruction mix and the critical dependencies between
instructions.

The processor has five largely independent execution units, each of which are
individualized for a specific class of instructions. Any one of these units may limit
processor performance, even as the other units sit idle. If this occurs, instructions
which use the idle units can be added to the program without adding any
appreciable delay.

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 29

User Instruction Latency and Repeat Rate

Table 1-2 shows the latencies and repeat rates for all user instructions executed in
ALU1, ALU2, Load/Store, Floating-Point Add and Floating-Point Multiply
functional units (definitions of latency and repeat rate are given in the Glossary).
Kernel instructions are not included, nor are control instructions not issued to
these execution units.

Table 1-2 Latencies and Repeat Rates for User Instructions

Instruction Type Execution Unit| Latency Rl‘;]::t Comment
Integer Instructions
Add/Sub/Logical/Set ALU1/2 1 1
ME/MT HI/LO ALU1/2 1 1
Shift/LUI ALU1 1 1
Cond. Branch Evaluation ALU1 1 1
Cond. Move ALU1 1 1
MULT ALU?2 5/6 6 Latency relative to Lo/Hi
MULTU ALU?2 6/7 7 Latency relative to Lo/Hi
DMULT ALU2 9/10 10 Latency relative to Lo/Hi
DMULTU ALU?2 10/11 11 Latency relative to Lo/Hi
DIV/DIVU ALU?2 34/35 35 Latency relative to Lo/Hi
DDIV/DDIVU ALU?2 66/67 67 Latency relative to Lo/Hi
Load (not include loads to CP1) | Load/Store 2 1 Assuming cache hit
Store Load/Store - 1 Assuming cache hit
Floating-Point Instructions
MTC1/DMTC1 ALU1 3 1
Add/Sub/Abs/Neg/Round/
Trunc/Ceil/Floor/ gcond FADD 2 1
CVT.S.W/CVTS.L FADD 4 2 Repeat rate is on average
CVT (others) FADD 2 1
Mul FMPY 2 1
MEFC1/DMFC1 FMPY 2 1
Cond. Move/Move FMPY 2 1
DIV.S/RECIP.S FMPY 12 14
DIV.D/RECIP.D FMPY 19 21
SQRT.S FMPY 18 20
SQRT.D FMPY 33 35
RSQRT.S FMPY 30 20
RSQRT.D FMPY 52 35
Latency is 2 only if the result is used as the
MADD FADD+EMPY 2/4 ! operan}(’:l specifizd by fr of another MADD
LWC1/LDC1/LWXC1/LDXC1 | LoadStore 3 1 Assuming cache hit

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

30

Version 2.0 of January 29, 1997

Chapter 1.

Please note the following about Table 1-2:

For integer instructions, conditional trap evaluation takes a single
cycle, like conditional branches.

Branches and conditional moves are not conditionally issued.

The repeat rate above for Load/Store does not include Load Link
and Store Conditional.

Prefetch instruction is not included here.

The latency for multiplication and division depends upon the next
instruction.

An instruction using register Lo can be issued one cycle earlier than
one using Hi.

For floating-point instructions, CP1 branches are evaluated in the
Graduation Unit.

CTC1 and CFC1 are not included in this table.

The repeat pattern for the CVT.S.(W/L)is “II x x IIx x ...”; the
repeat rate given here, 2, is the average.

The latency for MADD instructions is 2 cycles if the result is used
as the operand specified by fr of the second MADD instruction.

Load Linked and Store Conditional instructions (LL, LLD, SC, and
SCD) do not implicitly perform SYNC operations in the R10000.
Any of the following events that occur between a Load Linked and
a Store Conditional will cause the Store Conditional to fail: an
exception; execution of an ERET, a load, a store, a SYNC, a
CacheOp, a prefetch, or an external intervention/invalidation on
the block containing the linked address. Instruction cache misses
do not cause the Store Conditional to fail.

Up to four branches can be evaluated at one cycle.t

For more information about implementations of the LL, SC, and SYNC
instructions, please see the section titled, R10000-Specific CPU Instructions, in this

chapter.

1t Only one branch can be decoded at any particular cycle. Since each conditional
branch is predicted, the real direction of each branch must be “evaluated.” For

example,

beq r2,r3,L1
nop

A comparison of 12 and r3 is made to determine whether the branch is taken or not.
If the branch prediction is correct, the branch instruction is graduated. Otherwise,
the processor must back out of the instruction stream decoded after this branch, and
inform the IFetch to fetch the correct instructions. The evaluation is made in the
ALU for integer branches and in the Graduation Unit for floating-point branches. A
single integer branch can be evaluated during any cycle, but there may be up to 4
condition codes waiting to be evaluated for floating-point branches. Once the
condition code is evaluated, all dependant FP branches can be evaluated during the
same cycle.

MIPS R10000 Microprocessor User’s Manual

Introduction to the R10000 Processor 31

Other Performance Issues

Table 1-2 shows execution times within the functional units only. Performance
may also be affected by instruction fetch times, and especially by the execution of
conditional branches.

In an effort to keep the execution units busy, the processor predicts branches and
speculatively executes instructions along the predicted path. When the branch is
predicted correctly, this significantly improves performance: for typical
programs, branch prediction is 85% to 90% correct. When a branch is
mispredicted, the processor must discard instructions which were speculatively
fetched and executed. Usually, this effort uses resources which otherwise would
havebeen idle, however in some cases speculative instructions can delay previous
instructions.

Cache Performance

The execution of load and store instructions can greatly affect performance. These
instructions are executed quickly if the required memory block is contained in the
primary data cache, otherwise there are significant delays for accessing the
secondary cache or main memory. Out-of-order execution and non-blocking
caches reduce the performance loss due to these delays, however.

The latency and repeat rates for accessing the secondary cache are summarized in
Table 1-3. These rates depend on the ratio of the secondary cache’s clock to the
processor’s internal pipeline clock. The best performance is achieved when the
clock rates are equal; slower external clocks add to latency and repeat times.

The primary data cache contains 8-word blocks, which are refilled using 2-cycle
transfers from the quadword-wide secondary cache. Latency runs to the time in
which the processor can use the addressed data.

The primary instruction cache contains 16-word blocks, which are refilled using
4-cycle transfers.

Table 1-3 Latency and Repeat Rates for Secondary Cache Reads

SCCIKDiv L atency* F;estee?t
Mode (PCIk Cycles) (PCIk Cycles)
1 6 2 (data cache)
4 (instruction cache)
Lt 3 (data cache)
15 8-10 6 (instruction cache)
ot 4 (data cache)
2 9-12 8 (instruction cache)

1 Assumes the cache way was correctly predicted, and there are no conflicting requests.

* Repeat rate = PClk cycles needed to transfer 2 quadwords (data cache) or 4 quadwords
(instruction cache). Rate is valid for bursts of 2 to 3 cache misses; if more than three cache
misses in a row, there can be a 1-cycle “bubble.”

t Clock synchronization causes variability.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

32

Version 2.0 of January 29, 1997

Chapter 1.

The processor mitigates access delays to the secondary cache in the following
ways:
¢ The processor can execute up to 16 load and store instructions
speculatively and out-of-order, using non-blocking primary and
secondary caches. That is, it looks ahead in its instruction stream to
find load and store instructions which can be executed early; if the
addressed data blocks are not in the primary cache, the processor
initiates cache refills as soon as possible.

e If a speculatively executed load initiates a cache refill, the refill is
completed even if the load instruction is aborted. It is likely the data
will be referenced again.

e The data cache is interleaved between two banks, each of which
contains independent tag and data arrays. These four sections can be
allocated separately to achieve high utilization. Five separate circuits
compete for cache bandwidth (address calculate, tag check, load unit,
store unit, external interface.)

¢ The external interface gives priority to its refill and interrogate
operations. The processor can execute tag checks, data reads for load
instructions, or data writes for store instructions. When the primary
cache is refilled, any required data can be streamed directly to waiting
load instructions.

e The external interface can handle up to four non-blocking memory
accesses to secondary cache and main memory.

Main memory typically has much longer latencies and lower bandwidth than the
secondary cache, which make it difficult for the processor to mitigate their effect.
Since main memory accesses are non-blocking, delays can be reduced by
overlapping the latency of several operations. However, although the first part of
the latency may be concealed, the processor cannot look far enough ahead to hide
the entire latency.

Programmers may use pre-fetch instructions to load data into the caches before it
is needed, greatly reducing main memory delays for programs which access
memory in a predictable sequence.

MIPS R10000 Microprocessor User’s Manual

2. System Configurations

The R10000 processor provides the capability for a wide range of computer
systems; this chapter describes some of the uni- and multiprocessor alternatives.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 199733

34

Chapter 2.

2.1 Uniprocessor Systems

Version 2.0 of January 29, 1997

In a typical uniprocessor system, the System interface of the R10000 processor
connects in a point-to-point fashion with an external agent. Such a system is
shown in Figure 2-1. The external agent is typically an ASIC that provides a
gateway to the memory and I/O subsystems; in fact, this ASIC may incorporate
the memory controller itself.

If hardware I/O coherency is desired, the external agent may use the
multiprocessor primitives provided by the processor to maintain cache coherency
for interventions and invalidations. External duplicate tags can be used by the
external agent to filter external coherency requests.

Secondary
Cache

Secondary Cache Interface

R10000

System Interface

—_——— e — — —

|
External o Tags
Agent

To Other System Resources

Figure 2-1 Uniprocessor System Organization

MIPS R10000 Microprocessor User’s Manual

System Configurations 35

2.2 Multiprocessor Systems

Two types of multiprocessor systems can be implemented with R10000 processor:
* a dedicated external agent interfaces with each R10000 processor

* up to four R10000 processors and an external agent reside on a cluster
bus

Multiprocessor Systems Using Dedicated External Agents

A multiprocessor system may be created with R10000 processors by providing a
dedicated external agent for each processor; such a system is shown in Figure 2-2.
The external agent provides a path between the processor System interface and
some type of coherent interconnect. In such a system, the processor provides
support for three coherency schemes:

* snoopy-based
* snoopy-based with external duplicate tags and control

¢ directory-based with external directory structure and control

Secondary Secondary
Cache Cache
Secondary Cache Interface Secondary Cache Interface
R10000 R10000
System Interface System Interface

F——m—m—— — — —
|

Duplicate ' Duplicate
External \ Tags | External Tags
Agent Agent

Coherent Interconnect

A
v

' Directory

To Other System Resources Structure

Figure 2-2 Multiprocessor System Organization using Dedicated External Agents

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

36 Chapter 2.

Multiprocessor Systems Using a Cluster Bus

A multiprocessor system may be created with R10000 processors by using a cluster
bus configuration. Such a system is shown in Figure 2-3. A cluster bus is created
by attaching the System interfaces of up to four R10000 processors with an external
agent (the cluster coordinator). The cluster coordinator is responsible for managing
the flow of data within the cluster.

This organization can reduce the number of ASICs and the pin count needed for a
small multiprocessor systems.

The cluster bus protocol supports three coherency schemes:
* snoopy-based
* snoopy-based with external duplicate tags and control

¢ directory-based with external directory structure and control

Secondary Secondary
Cache Cache

Secondary Cache Interface Secondary Cache Interface
R10000 R10000
System Interface System Interface

Cluster Bus
A

A
v

! Duplicate ,

Cluster . Tags :
Coordinator | "~~~ """ °°

\ -t T hl

i Directory

' Structure !

To Other System Resources

Figure 2-3 Multiprocessor System Organization Using the Cluster Bus

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

3. Interface Signal Descriptions

This chapter gives a list and description of the interface signals.

The R10000 interface signals may be divided into the following groups:
¢ Power interface
® Secondary Cache interface
* System interface

e Test interface

The following sections present a summary of the external interface signals for each
of these groups. An asterisk (*) indicates signals that are asserted as a logical 0.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 199737

38

3.1 Power Interface Signals

Table 3-1 presents the R10000 processor power interface signals.

Table 3-1 Power Interface Signals

Chapter 3.

Signal Name Description Type

Vcc core

Vee Vcc for the core circuits. Input
Vcce output driver secondary cache

VeeQSC Vcc for the secondary cache interface output drivers. Input
Vcce output driver system

VeeQSys Vcc for the System interface output drivers. Input
Voltage reference secondary cache

VrefSC Voltage reference for the secondary cache interface input receivers. Input
Voltage reference system

VrefSys Voltage reference for the System interface input receivers. Input
Voltage reference bypass

VrefByp This pin must be tied to Vss (preferably) or VrefSys, through atleasta | Input
100 ohm resistor.

Vss Vss Input
Vss for the core circuits and output drivers. P
Vce PLL analog

VecPa Vcc for the PLL analog circuits. Input
Vss PLL analog

VssPa Vss for the PLL analog circuits. Input
Ve PLL digital

Veebd Vcc for the PLL digital circuits. Input
Vss PLL digital

Vssbd Vss for the PLL digital circuits. Input
DC voltages are OK

DCOk The external agent asserts these two signals when Vcc, Input
VeeQI[SC,Sys], Vref[SC,Sys], Vec[Pa,Pd], and SysClk are stable.

Errata

VrefByp description changed in Table 3-1.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Interface Signal Descriptions 39
3.2 Secondary Cache Interface Signals
‘Errata
Table 3-2; description of SCBAAAr(18:0) is revised. Table 3-2 presents the R10000
processor secondary cache interface signals.
Table 3-2 Secondary Cache Interface Signals
Signal Name | Description Type
SSRAM* Clock Signals
SCClIk(5:0) Secondary cache clock Output
SCClIk*(5:0) Duplicated complementary secondary cache clock outputs. P
SSRAM Address Signals
) Secondary cache address bus
25??3;;((11 88 '00)) SCBAddr is complementary SCAAddr 19-bit bus, which specifies the set Output
) address of the secondary cache data and tag SSRAM that is to be accessed.
Secondary cache tag LSB address
SCTagLSBAddr | Signal that specifies the least significant bit of the address for the secondary Output
cache tag SSRAM.
SSRAM Data Signals
SCADWay Secondary cache data way
SCBDWay Duplicated signal that indicates the way of the secondary cache data SSRAM Output
that is to be accessed.
. Secondary cache data bus e
SCData(127:0) 128-bit bus to read /write cache data from/to secondary cache data SSRAM. Bidirectional
Secondary cache data check bus
SCDataChk(9:0) | A 10-bit bus used to read/write ECC and even parity from/to the secondary Bidirectional
cache data SSRAM.
SCADOE* Secondary cache data output enable Output
SCBDOE* Duplicated signal that enables the outputs of the secondary cache data SSRAM. p
SCADWTr* Secondary cache data write enable Output
SCBDWTr* Duplicated signal that enables writing the secondary cache data SSRAM. P
SCADCS* Secondary cache data chip select Output
SCBDCS* Duplicated signal that enables the secondary cache data SSRAM. p

T All cache static RAM (SRAM) are synchronous SRAM (SSRAM).

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

40 Chapter 3.
Table 3-2 (cont.) Secondary Cache Interface Signals
Signal Name | Description | Type
SSRAM Tag Signals
SCTWay gle;r(igﬁigsjtcu}leg t’;lge ‘;"vi}}’, of the secondary cache tag SSRAM to be accessed. Output
SCTag(25:0) ?fngll?i?glzatzhfezlg/ls\i‘site cache tags from/to the secondary cache tag SSRAM. Bidirectional
SCTagChk(6:0) ie;(—);fcl?;zscjscgg ttsgrecahcf ; 1\fvlrjll’clesz ECC from/to the secondary cache tag SSRAM. Bidirectional
SCIOE* ieggrfla?%;?Zﬁié?egsiﬁzp;:t;ﬁzlcff the secondary cache tag SSRAM. Output
SCTWr* ieg);i?rt}}]l;?i;igegsvxri;’fisg a’i)lizesecor‘tdary cache tag SSRAM. Output
SCICS ?fgfgri?rv}:fﬁiaccﬁi;z%lgsﬁ’glzeslsséndary cache tag SSRAM. Output

Version 2.0 of January 29, 1997

MIPS R10000 Microprocessor User’s Manual

Interface Signal Descriptions 41
3.3 System Interface Signals
Table 3-3 presents the R10000 processor System interface signals.
Table 3-3 System Interface Signals
Signal Name Description Type
System Clock Signals
SysClk System clock Inout
SysClk* Complementary system clock input. P
System clock return
SysClkRet* Complementary system clock return output used for termination of the | Output
SysClkRet
system clock.
System Arbitration Signals
System request
SysReqg* The processor asserts this signal when it wants to perform a processor | Output
request and it is not already master of the System interface.
System grant
SysGnt* The external agent asserts this signal to grant mastership of the System | Input
interface to the processor.
System release
SvsRel* The master of the System interface asserts this signal for one SysClk cycle Bidirectional
y to indicate that it will relinquish mastership of the System interface in the
following SysClk cycle.
System Flow Control Signals
System read ready
SysRdRdy* The external agent asserts this signal to indicate that it can accept Input
processor read and upgrade requests.
System write ready
SysWrRdy* The external agent asserts this signal to indicate that it can accept Input
processor write and eliminate requests.
System Address/Data Bus Signals
System command
SysCmd(11:0) A 12-bit bus for transferring commands between processor and the Bidirectional
external agent.
System command bus parity e
SysCmdPar Odd parity for the system command bus. Bidirectional
System address/data bus
SysAD(63:0) A 64-bit bus for transferring addresses and data between R10000 and the | Bidirectional
external agent.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

42

Table 3-3 (cont.) System Interface Signals

Chapter 3.

Signal Name

Description

Type

System State Bus Signals

SysADChk(7:0)

System address/data check bus
An 8-bit ECC bus for the system address/data bus.

Bidirectional

SysVal*

System valid

The master of the System interface asserts this signal when it is driving
valid information on the system command and system address/data
buses.

Bidirectional

SysState(2:0)

System state bus
A 3-bit bus used for issuing processor coherency state responses and also
additional status indications.

Output

SysStatePar

System state bus parity
Odd parity for the system state bus.

Output

SysStateVal*

System state bus valid
The processor asserts this signal for one SysClk cycle when issuing a
processor coherency state response on the system state bus.

Output

System Response Bus Signals

SysResp(4:0)

System response bus
A 5-bit bus used by the external agent for issuing external completion
responses.

Input

SysRespPar

System response bus parity
Odd parity for the system response bus.

Input

SysRespVal*

System response bus valid
The external agent asserts this signal for one SysClk cycle when issuing
an external completion response on the system response bus.

Input

System Miscellaneous Signals

SysReset*

System reset
The external agent asserts this signal to reset the processor.

Input

SysNMI*

System non-maskable interrupt
The external agent asserts this signal to indicate a non-maskable
interrupt.

Input

SysCorErr*

System correctable error
The processor asserts this signal for one SysClk cycle when a correctable
error is detected and corrected.

Output

SysUncErr*

System uncorrectable error
The processor asserts this signal for one SysClk cycle when an
uncorrectable tag error is detected.

Output

SysGblPerf*

System globally performed

The external agent asserts this signal to indicate that all processor
requests have been globally performed with respect to all external
agents.

Input

SysCyc*

System cycle
The external agent may use this signal to define a virtual System interface
clock in a hardware emulation environment.

Input

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Interface Signal Descriptions

3.4 Test Interface Signals

Table 3-4 presents the R10000 processor test interface signals.

Errata
PLLDis and SelDVCO signal descriptions are revised in Table 3-4.
Table 3-4 Test Interface SignalsPLLDis
Signal Name Description Type
JTAG Signals
JTAG serial data input
JTDI Serial data input. Input
JTAG serial data output
JIDO Serial data output. Output
JTAG clock
JTCK Clock input. Input
JTAG mode select
JIMS Mode select input. Input
Miscellaneous Test Signals
TCA Testability control A (for manufacturing test only) Inout
This signal must be tied to Vss, through a 100 ohm resistor. p
TCB Testability control B (for manufacturing test only) Inout
This signal must be tied to Vss, through a 100 ohm resistor. P
. PLL disable (for manufacturing test only)
PLLDis This signal must be tied to Vss through a 100 ohm resistor. Input
PLLRC PLL Control Node (for manufacturing test only)
There must be no connection made to this signal.
PLLSpare(1:4) These four pins must be tied to Vss.
Spare(1,3) These two pins must be tied to Vss, through a 100 ohm resistor.
Tristate Control
TriState The system asserts this signal to tristate all outputs and input/ | Input
output pads except for SCClk, SCCLK*, and JTDO.
Select differential VCO (for manufacturing test only)
SelDVCO This signal must be tied to Vcc. Input

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

43

44 Chapter 3.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

4. Cache Organization and Coherency

The processor implements a two-level cache structure consisting of separate
primary instruction and data caches and a joint secondary cache.

Each cache is two-way set associative and uses a write back protocol; that is, two
cache blocks are assigned to each set (as shown in Figure 4-1), and a cache store
writes data into the cache instead of writing it directly to memory. Some time later
this data is independently written to memory.

A write-invalidate cache coherency protocol (described later in this chapter) is
supported through a set of cache states and external coherency requests.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 199745

46 Chapter 4.

4.1 Primary Instruction Cache

The processor has an on-chip 32-Kbyte primary instruction cache (also referred to
simply as the instruction cache), which is a subset of the secondary cache.
Organization of the instruction cache is shown in Figure 4-1.

The instruction cache has a fixed block size of 16 words and is two-way set
associative with a least-recently-used (LRU) replacement algorithm."

The instruction cache is indexed with a virtual address and tagged with a physical

address.
Way 0 16 Kbytes Way 1 16 Kbytes
Word Data 0 Word Word Data 1 Word
Tag 0 0 15 Tag 1 0 15
Set{ [TTTTTTTTTTTITTI] [TTTTTTITTTTTITIT]
block
Virtual
Index

Figure 4-1 Organization of Primary Instruction Cache

Each instruction cache block is in one of the following two states:
* Invalid

o Valid

1t The precise implementation of the LRU algorithm is affected by the speculative
execution of instructions.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Cache Organization and Coherency 47

An instruction cache block can be changed from one state to the other as a result
of any one of the following events:

* a primary instruction cache read miss
e subset property enforcement
e any of various CACHE instructions

e external intervention exclusive and invalidate requests

These events are illustrated in Figure 4-2, which shows the primary instruction
cache state diagram.

Subset enforcement

CACHE Index Invalidate (1)
CACHE Index Store Tag (1)
CACHE Hit Invalidate (I, S)

CACHE Index WriteBack Invalidate (S) gzaédHEilssd Store Tag (1)
ndex Store Tag

. Read hit

Intervention exclusive hit
Invalidate hit

Legend:

Internally initiated action;: ————
Externally initiated action: — — — —
(I) Instruction cache
(S) Secondary cache

Figure 4-2 Primary Instruction Cache State Diagram

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

48 Chapter 4.

4.2 Primary Data Cache

The processor has an on-chip 32-Kbyte primary data cache (also referred to simply
as the data cache), which is a subset of the secondary cache. The data cache uses a
fixed block size of 8 words and is two-way set associative (that is, two cache blocks
are assigned to each set, as shown in Figure 4-3) with an LRU replacement

algorithm.*
Way 0 16 Kbytes Way 1 16 Kbytes
Word Data 0 Word Word Data 1 Word
Tag 0 0 7 Tag 1 0 7

Set{ T T T T 1 I I

Virtual
Index

Figure 4-3 Organization of Primary Data Cache

The data cache uses a write back protocol, which means a cache store writes data
into the cache instead of writing it directly to memory. Sometime later this data is
independently written to memory, as shown in Figure 4-4.

Time o
- Primary write baCk= Secondary write baCk= Main
Processor Cache Cache Memory
.| .|

Figure 4-4 Write Back Protocol

Write back from the primary data cache goes to the secondary cache, and write
back from the secondary cache goes to main memory, through the system
interface. The primary data cache is written back to the secondary cache before the
secondary cache is written back to the system interface.

1t The precise implementation of the LRU algorithm is affected by the speculative
execution of instructions.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Cache Organization and Coherency

49

The data cache is indexed with a virtual address and tagged with a physical
address. Each primary cache block is in one of the following four states:

Invalid
CleanExclusive

DirtyExclusive
Shared

A primary data cache block is said to be Inconsistent when the data in the primary
cache has been modified from the corresponding data in the secondary cache. The
primary data cache is maintained as a subset of the secondary cache where the
state of a block in the primary data cache always matches the state of the
corresponding block in the secondary cache.

A data cache block can be changed from one state to another as a result of any one
of the following events:

primary data cache read/write miss
primary data cache write hit

subset enforcement

a CACHE instruction

external intervention shared request
intervention exclusive request

invalidate request

These events are illustrated in Figure 4-5, which shows the primary data cache
state diagram.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

50

7
7
7

Read hit

-
Intervention shared hit (\

Read miss obtained Shared
CACHE Index Store Tag (D)

Legend:
Internally initiated action:
Externally initiated action:

(S) Secondary cache
(D) Data cache

Version 2.0 of January 29, 1997

7/ . . .
Intervention exclusive hit

Chapter 4.

Subset enforcement

CACHE Index WriteBack Invalidate (D, S)
CACHE Index Store Tag (D)

CACHE Hit Invalidate (D, S)

CACHE Hit WriteBack Invalidate (D, S)

Read miss obtained CleanExclusive
CACHE Index Store Tag (D)

Clean

! Read hit
Exclusive

7/

Invalidate hit

Write hit

Y /Intervention shared hit
7
7

Intervention shared hit

Dirty
Exclusive

Read hit

Shared Write hit

Write hit and Upgrade ACK

Subset enforcement

Write miss

Read miss obtained DirtyExclusive
CACHE Index Store Tag (D)

Figure 4-5 Primary Data Cache State Diagram

MIPS R10000 Microprocessor User’s Manual

Cache Organization and Coherency 51

4.3 Secondary Cache

The R10000 processor must have an external secondary cache, ranging in size
from 512 Kbytes to 16 Mbytes, in powers of 2, as set by the SCSize mode bit. The
SCBlkSize mode bit selects a block size of either 16 or 32 words.

The secondary cache is two-way set associative (that is, two cache blocks are
assigned to each set, as shown in Figure 4-6) with an LRU replacement algorithm. '

The secondary cache uses a write back protocol, which means a cache store writes
data into the cache instead of writing it directly to memory. Some time later this
data is independently written to memory.

The secondary cache is indexed with a physical address and tagged with a

physical address.
Way 0 256 Kbytes to 8 Mbytes Way 1 256 Kbytes to 8 Mbytes
Word Data 0 Word Word Data 1 Word
Tag 0 0 7/15 Tag 1 0 7/15

Figure 4-6 Organization of Secondary Cache

Each secondary cache block is in one of the following four states:
e Invalid
* CleanExclusive
e DirtyExclusive
* Shared

t The precise implementation of the LRU algorithm is affected by the speculative
execution of instructions.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

52 Chapter 4.

A secondary cache block can be changed from one state to another as a result of
any of the following events:

* primary cache read/write miss

e primary cache write hit to a Shared or CleanExclusive block

* secondary cache read miss

* secondary cache write hit to a Shared or CleanExclusive block
¢ a CACHE instruction

* external intervention shared request

* intervention exclusive request

invalidate request

These events are illustrated in Figure 4-7, which shows the secondary cache state
diagram.

CACHE Index WriteBack Invalidate (S)
CACHE Index Store Tag (S)

CACHE Hit Invalidate (S)

CACHE Hit WriteBack Invalidate (S)

Read miss obtained CleanExclusive
CACHE Index Store Tag (S)

Clean
Exclusive

Read hit
7

7
7 Intervention exclusive hit Y
7 Invalidate hit ’

Write hit

, /Intervention shared hit
7
7’ A 4

Intervention shared hit

Read hit

Read hit
Write hit

Dirty

Shared Exclusive

Intervention shared hit ' Write hit and Upgrade ACK

Write miss

Read miss obtained DirtyExclusive

Read miss obtained Shared CACHE Index Store Tag (S)

CACHE Index Store Tag (S)

Legend:

Internally initiated action: ———
Externally initiated action: - - — — — — -
(S) Secondary cache

Figure 4-7 Secondary Cache State Diagram

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Cache Organization and Coherency 53

4.4 Cache Algorithms

The behavior of the processor when executing load and store instructions is
determined by the cache algorithm specified for the accessed address. The
processor supports five different cache algorithms:

¢ uncached

¢ cacheable noncoherent

¢ cacheable coherent exclusive

e cacheable coherent exclusive on write

e uncached accelerated

Cache algorithms are specified in three separate places, depending upon the
access:

* the cache algorithm for the mapped address space is specified on a
per-page basis by the 3-bit cache algorithm field in the TLB

* the cache algorithm for the kseg0 address space is specified by the 3-bit
KO field of the CPO Config register

* the cache algorithm for the xkphys address space is specified by
VA[61:59]

Table 4-1 presents the encoding of the 3-bit cache algorithm field used in the TLB;
EntryLo0 and EntryLol registers; CP0 Config register KO field for the kseg0 address
space; and VA[61:59] for the xkphys address space.

Table 4-1 Cache Algorithm Field Encodings

Value Cache Algorithm
0 Reserved
1 Reserved
2 Uncached
3 Cacheable noncoherent
4 Cacheable coherent exclusive
5 Cacheable coherent exclusive on write
6 Reserved
7 Uncached accelerated

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

54 Chapter 4.

Descriptions of the Cache Algorithms

This section describes the cache algorithms listed in Table 4-1.

Uncached

Loads and stores under the Uncached cache algorithm bypass the primary and
secondary caches. They are issued directly to the System interface using processor
double/single/partial-word read or write requests.

Cacheable Noncoherent

Under the Cacheable noncoherent cache algorithm, load and store secondary cache
misses result in processor noncoherent block read requests. External agents
containing caches need not perform a coherency check for such processor requests.

Cacheable Coherent Exclusive

Under the Cacheable coherent exclusive cache algorithm, load and store secondary
cache misses result in processor coherent block read exclusive requests. Such
processor requests indicate to external agents containing caches that a coherency
check must be performed and that the cache block must be returned in an Exclusive
state.

Cacheable Coherent Exclusive on Write

The Cacheable coherent exclusive on write cache algorithm is similar to the Cacheable
coherent exclusive cache algorithm except that load secondary cache misses result in
processor coherent block read shared requests. Such processor requests indicate
to external agents containing caches that a coherency check must be performed
and that the cache block may be returned in either a Shared or Exclusive state.

Store hits to a Shared block result in a processor upgrade request. This indicates to
external agents containing caches that the block must be invalidated.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Cache Organization and Coherency 55

Uncached Accelerated

The R10000 processor implements a new cache algorithm, Uncached accelerated.
This allows the kernel to mark the TLB entries for certain regions of the physical
address space, or certain blocks of data, as uncached while signalling to the
hardware that data movement optimizations are permissible. This permits the
hardware implementation to gather a number of uncached writes together, either
a series of writes to the same address or sequential writes to all addresses in the
block, into an uncached accelerated buffer and then issue them to the system
interface as processor block write requests. The uncached accelerated algorithm
differs from the uncached algorithm in that block write gathering is not performed.

There is no difference between an uncached accelerated load and an uncached
load. Only word or doubleword stores can take advantage of this mode.

Stores under the Uncached accelerated cache algorithm bypass the primary and
secondary caches. Stores to identical or sequential addresses are gathered in the
uncached buffer, described in Chapter 6, the section titled “Uncached Buffer.”

Completely gathered uncached accelerated blocks are issued to the System
interface as processor block write requests. Incompletely gathered uncached
accelerated blocks are issued to the System interface using processor double/
single-word write requests; this is also described in Chapter 6, the section titled
“Uncached Buffer.”

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

56

Chapter 4.

4.5 Relationship Between Cached and Uncached Operations

Version 2.0 of January 29, 1997

Uncached and uncached accelerated load and store instructions are executed in
order, and non-speculatively. Such accesses are buffered in the uncached buffer
by the processor until they can be issued to the System interface.

All uncached and uncached accelerated accesses retain program order within the
uncached buffer. The processor continues issuing cached accesses while uncached
accesses are queued in the uncached buffer.

NOTE: Cached accesses do not probe the uncached buffer for conflicts.

Buffered uncached stores prevent a SYNC instruction from graduating. However
buffered uncached accelerated stores do not prevent a SYNC instruction from
graduating. The processor continues issuing cached accesses speculatively and
out of order beyond a SYNC instruction that is waiting to graduate.

An uncached load may be used to guarantee that the uncached buffer is flushed of
all uncached and uncached accelerated accesses.

A SYNC instruction and the SysGblPerf* signal may be used to guarantee that all
cache accesses and uncached stores have been globally performed as described in
Chapter 6, the section titled “SysGblPerf* Signal.”

An uncached load followed by a SYNC instruction may be used to guarantee that
all cache accesses, uncached accesses, and uncached accelerated accesses have
been globally performed.

MIPS R10000 Microprocessor User’s Manual

Cache Organization and Coherency 57
4.6 Cache Algorithms and Processor Requests
The cache algorithm determines the type of processor request generated for
secondary cache load misses, secondary cache store misses, and store hits.
Table 4-2 presents the relationship between the cache algorithm and processor
requests.
Table 4-2 Cache Algorithms and Processor Requests
Cache Algorithm Load Miss Store Miss Store Hit
Uncached Double/single/partial-word | Double/ §1ngle /partial- NA
read word write
Cacheable noncoherent Noncoherent block read Noncoherent block read Upgrade if Shared*
Cacheable coherent Coherent block read Coherent block read . *
.)) Upgrade if Shared
exclusive exclusive exclusive
Cachez'able cohe?ent Coherent block read shared Cohergnt block read Upgrade if Shared
exclusive on write exclusive
Gather identical or
sequential double/single-
word stores in the uncached
. . buffer. Block write for
Uncached accelerated Double/single/partial-word completely gathered blocks. | NA

read

Double/single-word write
for incompletely gathered
blocks. Partial-word write

for partial-word stores.

1 Should not occur under normal circumstances. Most systems return the Exclusive state for a cacheable noncoherent line; therefore, the Shared

state is not normal.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

58 Chapter 4.

4.7 Cache Block Ownership

The processor requires cache blocks to have a single owner at all times. The owner
is responsible for providing the current contents of the cache block to any
requestor.

The processor uses the following ownership rules:

¢ The processor assumes ownership of a cache block if the state of the
cache block becomes DirtyExclusive. For a processor block read
request, the processor assumes ownership of the block after receiving
the last doubleword of a DirtyExclusive external block data response
and an external ACK completion response. For a processor upgrade
request, the processor assumes ownership of the block after receiving
an external ACK completion response.

® The processor gives up ownership of a cache block if the state of the
cache block changes to Invalid, CleanExclusive, or Shared.

e CleanExclusive and Shared cache blocks are always considered to be
owned by memory.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

5. Secondary Cache Interface

The processor supports a mandatory secondary cache by providing an internal
secondary cache controller with a dedicated secondary cache port.

The cache’s tag and data arrays each consist of an external bank of industry-
standard synchronous SRAM (SSRAM). This SSRAM must have registered inputs
and outputs, asynchronous output enables, and use the late write protocol (data is
expected one cycle after the address).

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 199759

60

Chapter 5.

5.1 Tag and Data Arrays

‘FErrata

Version 2.0 of January 29, 1997

The secondary cache consists of a 138-bit wide data array (128 data bits + 9 ECC
bits + 1 parity bit) and a 33-bit wide tag array (26 tag bits + 7 ECC bits), as shown
in Figure 5-1. ECC is supported for both the data and tag arrays to improve data
integrity.

10 Check Bits 128 Data Bits
Data 137_ 136 _ 127 0
Array P E ECC E
7 Check bits 26 Tag Bits
—_—~
Tag 32 : 25 0
Array ECC H

Figure 5-1 Secondary Cache Data and Tag Array

The secondary cache is implemented as a two-way set associative, combined
instruction/data cache, which is physically addressed and physically tagged, as
described in Chapter 4, the section titled “Cache Organization and Coherency.”

The SCSize mode bits specify the secondary cache size; minimum secondary cache
size is 512 Kbytes and the maximum secondary cache size is 16 Mbytes, in power
of 2 (512 Kbytes, 1 Mbyte, 2 Mbytes, etc.).

The SCBIkSize mode bit specifies the secondary cache block size. When negated,
the block size is 16 words, and when asserted, the block size is 32 words.

MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface 61

5.2 Secondary Cache Interface Frequencies

The secondary cache interface operates at the frequency of SCClk, which is
derived from PClk. The SCClkDiv mode bits select a PClk to SCClk divisor of 1,
15,2, 2.5, or 3, using the formula described in Chapter 7, the section titled
“Secondary Cache Clock.”

Synchronization between the PClk and SCClk is performed internally and is
invisible to the system. The processor supplies six complementary copies of the
secondary cache clock on SCCI1k(5:0) and SCCl1k(5:0)*.

‘FErrata

The outputs and inputs at this interface are triggered by an internal SCClk. The
relationship between the internal SCClk and the external SCClk[5:0]/SCClk[5:0]*
can be programmed during boot time by setting the SCClkTap mode bits (see the

section titled “Mode Bits” in Chapter 8 for detail on mode bits).

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

62

5.3 Secondary Cache Indexing

Indexing the Data Array

Version 2.0 of January 29, 1997

Chapter 5.

The secondary cache data array width is one quadword, and therefore PA(3:0),
which specify a byte within a quadword, are unused by the Secondary Cache

interface.

Since the maximum secondary cache size is 16 Mbytes (8 Mbytes per way), each

way requires a maximum of 23 bits to index a byte within a selected way, or 19 bits
toindex a quadword within a way. Consequently, the processor supplies PA(22:4)
on SC(A,B)Addr(18:0) to index a quadword within a way. The processor selects a
secondary cache data way with the SC(A,B)DWay signal.

Table 5-1 presents the secondary cache data array index for each secondary cache
size; for instance, a 4 Mbyte cache uses the 17 address bits, PA(20:4) on
SC(A,B)Addr(16:0), concatenated with the way bit, SC(A,B)DWay, to index a
quadword within a 2 Mbyte way.

Table 5-1 Secondary Cache Data Array Index

SCSize Seconda Physical

Mode Y Secondary Cache Data Array Index Address Bits
. Cache Size

Bits Used

0 512 Kbyte | SC(A,B)DWay | | SC(A,B)Addr(13:0) PA(17:4)
1 1 Mbyte SC(A,B)DWay | | SC(A,B)Addr(14:0) PA(18:4)
2 2 Mbyte SC(A,B)DWay | | SC(A,B)Addr(15:0) PA(19:4)
3 4 Mbyte SC(A,B)DWay | | SC(A,B)Addr(16:0) PA(20:4)
4 8 Mbyte SC(A,B)DWay | | SC(A,B)Addr(17:0) PA(21:4)
5 16 Mbyte SC(A,B)DWay | | SC(A,B)Addr(18:0) PA(22:4)

MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface

Indexing the Tag Array

The processor supplies the secondary cache tag array’s least significant index bit
on SCTagLSBAddr to support two block sizes without system hardware changes.
This signal functions normally as a least significant index bit when the secondary
cache block size is 16 words. However, when the secondary cache block size is 32

words, this signal is always negated, since only half as many tags are required.
The processor supplies the secondary cache tag way on SCTWay.

Table 5-2 presents the secondary cache tag array index for each secondary cache

size; it shows each index is composed of a physical address loaded onto
SC(A,B)Addr(), concatenated with SCTWay and SCTagLSBAddr.

Table 5-2 Secondary Cache Tag Array Index

Sl\i(?ciizee Secondary Secondary Cache Tag Array Index
Bits Cache Size y & y
0 512 Kbyte | SCTWay | | SC(A,B)Addr(13:3) | | SCTagLSBAddr
1 1 Mbyte SCTWay | | SC(A,B)Addr(14:3) | | SCTagLSBAddr
2 2 Mbyte SCTWay | | SC(A,B)Addr(15:3) | | SCTagLSBAddr
3 | 4 Mbyte SCTWay | | SC(A,B)Addr(16:3) | | SCTagLSBAddr
4 8 Mbyte SCTWay | | SC(A,B)Addr(17:3) | | SCTagLSBAddr
5 16 Mbyte SCTWay | | SC(A,B)Addr(18:3) | | SCTagLSBAddr

For a system design that only supports a secondary cache block size of 32 words,

the secondary cache tag array need not use SCTagLSBAddr as an index bit.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

64

Chapter 5.

5.4 Secondary Cache Way Prediction Table

The primary and secondary caches are two-way set associative. However, the
implementation of the secondary cache is different than the primary caches.

The primary caches read simultaneously from two separate tag arrays,
corresponding to each way in the cache, and then select the data based on the
result of two parallel tag compares.

The secondary cache does not use this implementation because it would either
require too many pins to read in two full copies of the data and tags, or add latency
to externally multiplex two banks of memory. Instead, a way prediction table is
used to determine which way to read from first.

The way prediction table is internal to the processor and has 8K one-bit entries,
each entry corresponding to a pair of secondary cache blocks. The bit entry
indicates which way of the addressed set has been most-recently used (MRU).
When the secondary cache is accessed, this prediction bit is used as an address bit;
thus the two ways in the secondary cache are shared in the same SSRAM bank.

The secondary cache way prediction table is indexed with a subset of 11 to 13 bits
of the physical address, based on both the secondary cache block size, and the
secondary cache size, as shown in Table 5-3. “0 || ” indicates a zero bit
concatenated to the address to pad the index out to a full 13-bits.

Table 5-3 Secondary Cache Way Prediction Table Index

SCSize Secondary Cache SCBIkSize Secondary Cache Secondary Cache
Mode Bits Size Mode Bit Block Size Way Prediction Table Index

0 16-word 0 Il PA(17:6)

0 512 Kbyte
1 32-word 01l 01l PA(17:7)
0 16-word PA(18:6)

1 1 Mbyte
1 32-word 0 Il PA(18:7)
0 16-word PA(18:6)

2to5 2M to 16 Mbyte

1 32-word PA(19:7)

Version 2.0 of January 29, 1997

MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface 65

Three states are possible in the way prediction table:
¢ the desired data is in the predicted way
* the desired data is in the non-predicted way

* the desired data is not in the secondary cache

The tags for both ways are read “underneath” the data access cycles in order to
discern as rapidly as possible which of these states are valid. This reading is
possible because it takes two accesses to read a primary data block (8 words) and
4 cycles to read a primary instruction block (16 words); thus the bandwidth
needed to read the tag array twice exists in all cases. Only an extra address pin to
the tag array is needed to make this operation parallel and this is implemented by
the SCTWay pin.

The three possible states are handled in the following manner:

e If, after reading the tags for both ways, it is discovered that the data
exists in the predicted way, the processor continues normally.

e If the data exists in the non-predicted way, the processor accesses this
non-predicted way in the secondary cache and updates the way
prediction table to point to this way.

FErrata

If the access misses in both ways of the secondary cache, the data is
fetched from the system interface. If the state of the predicted way is
found to be invalid, the fetched data is placed in it and the MRU is
unchanged. However, if the state of the predicted way is found to be
valid then the fetched data is placed into the non-predicted way, and the
way prediction table is updated to point to this way since it is now the
most-recently-used.

The way prediction table can cover up to a 2 Mbyte secondary cache when the
secondary cache block size is 32 words. If the secondary cache exceeds this size,
the accuracy of the way prediction table diminishes slightly. However, the
extremely large performance gain made by making the secondary cache larger far
outstrips any performance loss in the way prediction table.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

66

Chapter 5.

5.5 Secondary Cache Tag

SCTag(25:4), Physical Tag

Version 2.0 of January 29, 1997

The secondary cache tag, transferred on the SCTag(25:0) bus, is divided into three
fields, as shown in Figure 5-2 below.

25 4 3210
Physical Tag Pldx | State I
22 2 2

Figure 5-2 Secondary Cache Tag Fields

The minimum secondary cache size is 512 Kbytes (256 Kbytes per way), so a
minimum of 18 bits are required to index a data byte within a selected way. Since
the processor supports 40 physical bits, a maximum of 22 bits are required for the
physical tag:

40 physical address bits - 18 minimumrequired = 22

Consequently, the processor supplies the 22 physical address bits, PA(39:18), on
SCTag(25:4) for the physical tag.

When the secondary cache is larger than the minimum size, the secondary cache
tag array must still maintain the full physical tag supplied by the processor, even
though some bits are redundant.

MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface

SCTag(3:2), PIdx

67

Bits SCTag(3:2) of the secondary cache tag contain the primary cache index, Pldx.

The Pldx field contains VA(13:12), which are the two lowest virtual address bits
above the minimum 4 Kbyte page size. This field is written into the secondary
cache tag during a secondary cache refill. For each processor-initiated secondary
cache access, the virtual address bits are compared with the Pldx field of the
secondary cache tag. If a mismatch occurs, a virtual coherency condition exists
and the value of the PIdx field is used by internal control logic to purge primary
cache locations, so that all primary cache blocks holding valid data have indices
known to the secondary cache. This mechanism, unlike that of the R4400
processor, is implemented in hardware. It helps preserve the integrity of cached
accesses to a physical address using different virtual addresses, an occurrence
called virtual aliasing. For each external coherency request, the Pldx field of the
secondary cache tag provides a mechanism to locate subset lines in the primary
caches.

SCTag(1:0), Cache Block State

The lower two bits of the secondary cache tag, SCTag(1:0), contain the cache block
state, which can be Invalid, Shared, CleanExclusive, or DirtyExclusive as shown in
Table 5-4.

Table 5-4 Secondary Cache Tag State Field Encoding

SCTag(1:0) State
0 Invalid
1 Shared
2 CleanExclusive
3 DirtyExclusive

Since the secondary cache tags are updated immediately for stores to the primary
data cache, and all caches use a write back protocol, the data in the secondary
cache may not always be consistent with data in the primary cache even though
the tags always reflect the correct state of a secondary cache block.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

68 Chapter 5.

5.6 Read Sequences

There are five basic read sequences:
* a4-word read
e an 8-word read
e al6-word read
® a 32-word read

* atagread

FErrata

The SCCIk referred in the secondary cache read and write timing diagrams is an
internal SCCIk. The relationship between this internal SCClk and the external
SCCIK[5:01/SCCIK[5:0]* can be programmed during boot time by setting the
SCClkTap mode bits (see the section titled “Mode Bits” in Chapter 8 for detail on
mode bits).

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface 69

4-Word Read Sequence

A 4-word read sequence is performed by a CACHE Index Load Data (S)
instruction to read a doubleword of data and 10 check bits from the secondary
cache data array.
Figure 5-3 depicts a secondary cache 4-word read sequence. A quadword is read
from the index specified by PA(23:6), and the way specified by VA(0) of the
CACHE instruction.
The doubleword specified by VA(3) is then stored into the CP0 TagHi and TagLo
registers, and the corresponding check bits are stored into the CP0 ECC(9:0)
register. The data may be examined by copying the CP0 TagHi, TagLo, and ECC
registers to the general registers with the MTCO instruction.

Cycle {11213 :4:5:6:!71i8i9i10i11:1213: 141516} 17 |

SCCIk / / / / / /

SC[A,B]Addr(18:0) XAdoX

SCTagLSBAddr ' ' ' '

SC[A,B]DWay XX X] I

SCData(127:0) XDatX0X

SCDataChk(9:0)

SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

B e 1 el el el el el el el il R

Figure 5-3 4-Word Read Sequence

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

70

8-Word Read Sequence

Chapter 5.

An 8-word read sequence refills the primary data cache from the secondary cache
after a primary data cache miss.

Figure 5-4 depicts a secondary cache 8-word read sequence. In it, SC(A,B)DWay
and SCTWay are driven with value X on the first address cycle, which is obtained
from the way prediction table.

On the next address cycle, SCTWay is complemented in order to read the tag from
the non-predicted way of the addressed set. SC(A,B)DWay is not changed since it
is assumed that the way prediction table is correct and the read is likely to hit in
the predicted way.

The tag for the non-predicted way is returned to the processor in the same cycle as
the second quadword of data. Reads that miss in the predicted way, but hit in the
non-predicted way, are noted by the internal control logic and reissued to the
secondary cache as soon as possible.

SCTOE*

XX

SCTWr*

Cycle i1i2i3ia4ai5i6i{7i8!9i10i11:1213}14! 15! 16} 17 |
sceik 0 NP NIV g NIV g NIV g NIV g NIV g NP g NIV g NIV g NIV g NIV g IV g NIV g IV g NIV 0 NV g N
SCIA,B]Addr(18:0) | XAwoXAaiX 4 &+
SCTagLSBAddr |} X
SCIA.BIDWay |}) I G —
SCData(127:0) I : ' :D(DatXOIP(DatX1IP(
SCDataChk(9:0) |} XX
SC[A,B]DOE* I S R S S A S S A SR N AN SR S S
SC[A,B]DWr* I e
SC[A,B]DCS* I S NS S SN SN NS S SRS SN S NS SN NS S N
SCTWay | D(X D(X D(. :
SCTag(25:0) | : ' D(TagX w
SCTagChk(6:0) |} G G

¥

|

|

SCTCS*

Version 2.0 of January 29, 1997

Figure 5-4 8-Word Read Sequence

MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface 71

16 or 32-Word Read Sequence

A 16-word read sequence refills the primary instruction cache from the secondary
cache after a primary instruction cache miss. A 16-word read sequence is also
performed when the secondary cache block size is 16 words, and a DirtyExclusive
secondary cache block must be written back to the System interface.

A 32-word read sequence is performed when the secondary cache block size is 32
words, and a DirtyExclusive secondary cache block must be written back to the
System interface.

Figure 5-5 depicts a secondary cache 16 or 32-word read sequence. This is similar
to an 8-word read sequence except that more addresses must be issued, in order
to read the appropriate number of quadwords.

Cycle | - 1
SccClk |
SC[A,B]Addr(18:0) |
SCTagLSBAddr |
SC[A,B]DWay
SCData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

9 1101112113 14} 15| 16 | 17 !

Figure 5-5 16 or 32-Word Read Sequence

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

72 Chapter 5.

Tag Read Sequence
A tag read sequence is performed when the state of a secondary cache block is
required, but it is not necessary to access the data array. This sequence is used for
the CACHE Index Load Tag (S) instruction.
Figure 5-6 depicts a secondary cache tag read sequence.
Cycle li1i2i3i4i5i6i7i8i9i10i11i12/1314} 151617
AU N S U U Tt e
SCIA BlAddr(18:0) | XAdoX_ T & T v T T T T
SCTagLSBAddr |! : X___X

SC[A,B]DWay
SCData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SCI[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

XXX

XX

Figure 5-6 Tag Read Sequence

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface

5.7 Write Sequences

There are five basic write sequences:

FErrata

a 4-word write.

an 8-word write
a 16-word write
a 32-word write

a tag write

73

The SCCIk referred in the secondary cache read and write timing diagrams is an

internal SCCIk. The relationship between this internal SCClk and the external

SCCIK[5:01/SCCIK[5:0]* can be programmed during boot time by setting the

SCClkTap mode bits (see the section titled “Mode Bits” in Chapter 8 for detail on

mode bits).

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

74

4-Word Write Sequence

Cycle |- 1
SCClk |

Chapter 5.

A 4-word write sequence is performed by a CACHE Index Store Data (S)
instruction to store a quadword of data and 10 check bits into the secondary cache
data array.

Figure 5-7 depicts a secondary cache 4-word write sequence. A quadword is
written to the index specified by PA(23:6), and the way specified by VA(0) of the
CACHE instruction.

A doubleword specified by VA(3) is obtained from the CP0 TagHi and TagLo
registers, and the other half of the doubleword is padded to zeros. Normal ECC
and parity generation is bypassed and the check field of the data array is written
with the contents of the CPO ECC(9:0) register.

2131 4:!516 7819110111213} 14 15} 16 ! 17 |

SC[A,B]Addr(18:0) |

XAdr0 X

SCTagLSBAddr |

SC[A,B]DWay I

XX X

SCData(127:0)

> Dat0 >

SCDataChk(9:0)

X

SC[A,B]DOE*

SCI[A,B]DWr*
SC[A,B]DCS*

SCTag(25:0)

SCTagChk(6:0)

SCTOE*

I

I

I

I

I

SCTWay [
I

I

I

SCTWr* [
I

SCTCS*

Version 2.0 of January 29, 1997

Figure 5-7 4-Word Write Sequence

MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface 75

8-Word Write Sequence

An 8-word write sequence writes back a dirty block from the primary data cache
to the secondary cache.

Figure 5-8 depicts a secondary cache 8-word write sequence. SC(A,B)DWay are
driven with the way bit obtained from the primary data cache tag. The secondary
cache tag is not written since it was previously updated when the primary data
cache block was modified.

Cycle
SCClk : :
SC[A,B]Addr(18:0) I: :XAdrO:XAdrI:X :
SCTagLSBAddr | : : : : :
SC[A,B]DWay I: X X : x :
SCData(127:0) : >—<: Dat0 :>< Dat1 » :

SCDataChk(9:0)
SC[A,B]DOE*
SC[A,B]DWr*
SC[A,B]DCS*

I
I —X
I
I
I
SCTWay I
I
I
I
I
I

SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
SCTCS*

B et Tl ettt B B £ B B B EEES CLEEPY B

Figure 5-8 8-Word Write Sequence

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

76

Chapter 5.

16 or 32-Word Write Sequence

Cycle i
SCClk ¥

14920344’

A 16- or 32-word write sequence refills a secondary cache block from the System
interface after a secondary cache miss. A 16-word write sequence is performed
when the secondary cache block size is 16 words, and a 32-word write sequence is
performed when the secondary cache block size is 32 words.

Figure 5-9 depicts a secondary cache 16 or 32-word write sequence.

5167 i8i9!1i11{12!13! 14} 15! 16| 17 |

SCTagLSBAddr |

SC[A,B]DWay

SCbData(127:0)

SCDataChk(9:0)

4

SC[A,B]DOE*
SCIA,B]DWr*
SC[A,B]DCS*

SCTWay

SCTag(25:0)

SCTagChk(6:0)

SCTOE*

SCTWr*
SCTCS*

Version 2.0 of January 29, 1997

| a —i
e IS e
'\—/«
::::::“:::

Figure 5-9 16/ 32-Word Write Sequence

MIPS R10000 Microprocessor User’s Manual

Secondary Cache Interface 77

Tag Write Sequence

A tag write sequence updates the secondary cache tag array without affecting the
data array. This sequence is used for the following:

* to reflect primary cache state changes in the secondary cache
e for external coherency requests

¢ for the CACHE Index Store Tag (S) instruction

Figure 5-10 depicts the secondary cache tag write protocol.

Cycle li1i2i3i{4i5i6{7i8:9:10{11;1213} 14} 15 16} 17 |
SCClk I"\I\I\I\I\I\I\I\I\J‘\I\I\I\I\I\J‘\I\J
SC[A,B]Addr(18:0) ||
SCTagLSBAddr |
SC[A,B]DWay
SCData(127:0)
SCDataChk(9:0)
SC[A,B]DOE*
SCI[A,B]DWr*
SC[A,B]DCS*
SCTWay
SCTag(25:0)
SCTagChk(6:0)
SCTOE*
SCTWr*
scTcs*

Figure 5-10 Tag Write Sequence

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

78 Chapter 5.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

6. System Interface Operations

The R10000 System interface provides a gateway between processor, with its
associated secondary cache, and the remainder of the computer system.

For convenience, any device communicating with the processor through the
System interface is referred to as the external agent.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 199779

80

Chapter 6.

6.1 Request and Response Cycles

The System interface supports the following request and response cycles:

Processor requests are generated by the processor, when it requires a
system resource.

External responses are supplied by an external agent in response to a
processor request.

External requests are generated by an external agent when it requires a
resource within the processor.

Processor responses are supplied by the processor in response to an
external request.

6.2 System Interface Frequencies

The System interface operates at SysClk frequency, supplied by the external agent.
The internal processor clock, PCIK, is derived from this same SysClk.

The SysClkDiv mode bits select a PClk to SysClk divisor of 1, 1.5, 2, 2.5, 3, 3.5, or
4, using the formula described in Chapter 7, the section titled “System Interface
Clock and Internal Processor Clock Domains.”

6.3 Register-to-Register Operation

The System interface is designed to operate in the following register-to-register
fashion with the external agent:

all System interface outputs are sourced directly from registers clocked
on the rising edge of SysClk

all System interface inputs directly feed registers that are clocked on
the rising edge of SysClk

This allows the System interface to run at the highest possible clock frequency.

Version 2.0 of January 29, 1997

MIPS R10000 Microprocessor User’s Manual

System Interface Operations

81

6.4 System Interface Signals

The R10000 System interface is composed of:

6.5 Master and Slave States

3 arbitration signals

2 flow-control input signals

a bidirectional 12-bit command bus

a bidirectional 64-bit multiplexed address/data bus
a 3-bit state output bus

a 5-bit response input bus

At any time, the System interface is either in master or slave state.

In master state, the processor drives the bidirectional System interface signals and
is permitted to issue processor requests to the external agent.

In slave state, the processor tristates the bidirectional System interface signals and
accepts external requests from the external agent.

6.6 Connecting to an External Agent

In a uni- or multiprocessor system using dedicated external agents, the System
interface connects to a single external agent.

In a multiprocessor system using the cluster bus (see below), the system can
connect up to four R10000 processors to an external agent. This external agent is
referred to as the cluster coordinator.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

82

6.7 Cluster Bus

(Master)
R10000

System Interface

Processor Request

l

A

Chapter 6.

In a multiprocessor system using the cluster bus, the cluster coordinator performs
the cluster bus arbitration and data flow management. The arbitration scheme
assures that either one of the processors or the cluster coordinator is master at any
given time, while the remaining devices are slave.

A processor request issued by the master processor is observed as an external
request by all slave R10000 processors, as shown in Figure 6-1. Similarly, a
processor coherency data response issued by a master processor is observed as an
external data response by the slave processors.

(Slave)
R10000

System Interface

(Slave)
R10000

System Interface

(Slave)
R10000

System Interface

External Request

TCIuster Bus T

Version 2.0 of January 29, 1997

v

A

Cluster
Coordinator

Figure 6-1 Processor Request Master/Slave Status

In a multiprocessor system using the cluster bus, a mode bit specifies whether
processor coherent requests are to target the external agent only, or all processors
and the external agent. This allows systems with efficient snoopy, duplicate tag,
or directory-based coherency protocols to be created.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 83

6.8 System Interface Connections

The major System interface connections required for various system
configurations are presented in this section.

Uniprocessor System

Figure 6-2 shows the major System interface connections required for a typical
uniprocessor system.

SysReq* SysReq* SCTWr* Wr*
EXte m al SysGnt* SysGnt* SCTCS* CS:
Ag ent SysRer SysRel* R10000 SCTOE* OE* .,
SCTag(25:0) Data 0 &
SysRdRdy* SysRdRdy* SCTagChk(6:0) J§> @
SysWrRdy* SysWrRdy* @
SCTWa)
SCTagLSBAdd¥
SysCmd(11:0) SysCmd(11:0)
SysCmdPar SysCmdPar)
SysAD(63:0) SysAD(63:0) SC(A,B)Addr(18:0)
Mem, /0 R<€P» SysADChK(7:0) SysADChK(7:0)
SysVal* SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysState(2:0)
SysStatePar
SysStateVal*

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SysResp(4:0) SysResp(4:0) SC(A,B)DWr* Wr* g
SysRespPar SysRespPar SC(A,B)DCS* Cs* L
SysRespVal* SysRespVal* SC(A,B)DOE* OE* H

Figure 6-2

System Interface Connections for Uniprocessor System

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

84

Multiprocessor System Using Dedicated External Agents

Coherent Interconnect

Figure 6-3 System Interface Connections for Multiprocessor using Dedicated External Agents

v

Chapter 6.

Figure 6-3 shows the major System interface connections required for a typical
multiprocessor system using dedicated external agents.

SysReqg*
External Sysent
A g ent SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SysReqg*
External Sysent
A g ent SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

Version 2.0 of January 29, 1997

SysState(2:0)
SysStatePar
SysStateVal*

SysResp(4:0)
SysRespPar
SysRespVal*

| SysReqg*

— | SysGnt*

-4——p SysCmd(11:0)
-4——p SysCmdPar
~t—m{ SysAD(63:0)
~t——p{ SysADChk(7:0)
-——p SysVal*

-———— SysState(2:0)
-4—— SysStatePar
-———— SysStateVal*

—— ! SysResp(4:0)
——m» SysRespPar
——m» SysRespVal*

SysReq* SCTWr*
SysGnt* SCTCS*
SysRel* SCTOE*
R 10000 SCTag(25:0)
SysRdRdy* SCTagChk(6:0)
SysWrRdy*
SCTWay
SCTagLSBAddr
SysCmd(11:0)
SysCmdPar
SysAD(63:0) SC(A,B)Addr(18:0)
SysADChk(7:0)
SysVal*

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SC(A,B)DWr*
SC(A,B)DCS*
SC(A,B)DOE*

SCTWr*
SCTCS*

-4——p SysRel* SCTOE*

R10000 SCTag(25:0)

—— = SysRdRdy* SCTagChk(6:0)
——m» SysWrRdy*

SCTWay

SCTagLSBAddr

SC(A,B)Addr(18:0)

SC(A,B)DWay

SCData(127:0)
SCDataChk(9:0)

SC(A,B)DWr*
SC(A,B)DCS*
SC(AB)DOE*

MIPS R10000 Microprocessor User’s Manual

System Interface Operations

Multiprocessor System Using the Cluster Bus

Mem, 1/O

Figure 6-4 System Interface Connections for Multiprocessor Using the Cluster Bus

85

Figure 6-4 presents the major System interface connections required for a typical
multiprocessor system using the cluster bus.

SysRel*

SysRdRdy*
SysWrRdy*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*

SysResp(4:0)
SysRespPar
SysRespVal*

SysReq0*
SysGnt0*

Cluster
Coordinator

SysState0(2:0)
SysStatePar0
SysStateVal0O*

SysReql*
SysGnt1*

SysState1(2:0)
SysStateParl
SysStateVall*

Cluster Bus

SysReq* SCTWr*
| SysGnt* SCTCS*
- SysReI*RlOOOO SCTOE*
N SCTag(25:0)
»-| SysRdRdy SCTagChk(6:0)

- SysWrRdy*
SCTWay
SCTagLSBAddr

SysCmd(11:0)

SysCmdPar

SysADChk(7:0)

IYYYY)
YYVYYY

SysCmd(11:0)

SysCmdPar

SysADChk(7:0)

IYYYY)
YYVYYY

MIPS R10000 Microprocessor User’s Manual

SysAD(63:0) SC(AB)Addr(18:0)

SysVal*
SysState(2:0) SC(A,B)DWay
SysStatePar
SysStateVal* SCData(127:0)
SCDataChk(9:0)
- SysResp(4:0) SC(A,B)DWr*
- SysRespPar SC(A,B)DCS*
- SysRespVal* SC(A,B)DOE*
SysReq* SCTWr*
- SysGnt* SCTCS*
- SysRel* SCTOE*
Rloooo SCTag(25:0)
»| SysRdRdy* SCTagChk(6:0)
- SysWrRdy*

SCTWay
SCTagLSBAddr

SysAD(63:0) SC(AB)Addr(18:0)

SysVal*
SysState(2:0) SC(A,B)DWay
SysStatePar
SysStateVal* SCData(127:0)
SCDataChk(9:0)
- SysResp(4:0) SC(A,B)DWr*
- SysRespPar SC(A,B)DCS*
- SysRespVal* SC(A,B)DOE*

Version 2.0 of January 29, 1997

86

Chapter 6.

6.9 System Interface Requests and Responses

Processor Requests

Version 2.0 of January 29, 1997

The System interface supports the following:
® processor request
* external response
* external request

® processor response

The following sections describe these request and response types, and their
operations.

Processor requests are generated by the processor when it requires a system
resource. The following processor requests are supported:

e coherent block read shared request

e coherent block read exclusive request

e noncoherent block read request

* double/single/partial-word read request
* block write request

* double/single/partial-word write request
e upgrade request

* eliminate request

Processor write and eliminate requests do not require or expect a response by the
external agent. However, if an external agent detects an error in a processor write
or eliminate request, it may use an interrupt to signal the processor. It is not
possible to generate precise exceptions for processor write and eliminate requests
for which an external agent detects an error.

Processor read and upgrade requests require some type of response by the external
agent.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 87

External Responses

External responses are supplied by an external agent or another processor in
response to a processor request. The following external responses are supported:

* block data response
* double/single/partial-word data response

* completion response

External Requests

External requests are generated by an external agent when it requires a resource
within the processor. The following external requests are supported:

* intervention shared request

* intervention exclusive request

¢ allocate request number request
* invalidate request

¢ interrupt request

External intervention and invalidate requests require some type of response by
the processor.

Processor Responses

Processor responses are supplied by the processor in response to an external
request. The following processor responses are supported:

¢ coherency state response

¢ coherency data response

Outstanding Requests and Request Numbers

The processor allows requests and corresponding responses to be split
transactions, which enables additional processor and external requests to be
issued while waiting for a prior response. The System interface supports a request
number field to link requests with their corresponding responses, so responses
can be returned out of order.

The processor allows a maximum of eight outstanding requests on the System
interface through a 3-bit request number. These outstanding requests may be
composed of any mix of processor and external requests.

An individual processor (as opposed to the System interface, above) supports a
maximum of four outstanding processor requests at any given time.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

88

Chapter 6.

Request and Response Relationship

The relationship between processor and external requests, and their acceptable
responses, is presented in Table 6-1. The data in this table is given with respect to
a single processor, in either a uni- or multiprocessor system (independent of
cluster /non-cluster configuration).

Table 6-1 Request and Response Relationship

Request

Acceptable Response Sequences

Processor block read request

External NACK or ERR completion response

0 or more external block data responses followed by a final external block
data response with a coincidental or subsequent external ACK, NACK, or
ERR completion response

Processor double/single/partial-
word read request

External NACK or ERR completion response

0 or more external double/single/partial-word data responses followed
by a final external double/single/partial-word data response with a
coincidental or subsequent external ACK, NACK, or ERR completion
response

Processor block write request

None

Processor double/single/partial-
word write request

None

Processor upgrade request

External ACK, NACK, or ERR completion response

0 or more external block data responses followed by a final external block
data response with a coincidental or subsequent external ACK, NACK, or
ERR completion response

Processor eliminate request

None

External intervention request

Processor coherency state response followed by processor coherency data
response (if DirtyExclusive) with a coincidental or subsequent external
ACK, NACK, or ERR completion responset

External allocate request number
request

External ACK, NACK, or ERR completion response”

External invalidate request

Processor coherency state response followed by external ACK, NACK, or
ERR completion response

External interrupt request

None

1 External completion response is required to free the request number.

Version 2.0 of January 29, 1997

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 89

6.10 System Interface Buffers

The processor contains the following five buffers to enhance the performance of
the System interface and to simplify the system design:

* cluster request buffer
* cached request buffer
* incoming buffer
* outgoing buffer

e uncached buffer

These buffers are described in the following sections.

Cluster Request Buffer

The System interface contains an 8-entry cluster request buffer. This buffer
maintains the status of the eight possible outstanding requests on the System
interface. When the System interface is in master state, and it issues the address
cycle of processor read or upgrade request, the processor places an entry into the
cluster request buffer. When the System interface is in slave state, and an external
agent issues an external coherency or allocate request number request, it places an
entry into the cluster request buffer.

Once an entry is placed into the cluster request buffer, the associated request
number transitions from free to busy. An entry remains busy until the processor
receives an external completion response. Processor requests that are ready to be
issued to the System interface bus probe the cluster request buffer to detect
conflict conditions.

Cached Request Buffer

The System interface contains a four-entry cached request buffer. This buffer
holds the status of the four possible outstanding processor cached requests,
including processor block read and upgrade requests. The relative order of the
requests is maintained in the cached request buffer.

External coherency requests probe the cached request buffer to detect conflict
conditions.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

90

Incoming Buffer

Version 2.0 of January 29, 1997

Chapter 6.

The System interface contains an incoming buffer for external block and double/
single/partial-word data responses. The four 32-word entries of the incoming
buffer correspond to the four possible outstanding processor requests. Block data
in each entry of the incoming buffer is stored in subblock order, beginning with a
quadword-aligned address.

The incoming buffer eliminates the need for the processor to flow-control the
external agent that is providing the external data responses. Regardless of the
cache bandwidth or internal resource availability, the external agent may supply
external data response data for all outstanding read and upgrade requests at the
maximum System interface data rate.

The external agent may issue any number of external data responses for a
particular request number before issuing a corresponding external completion
response. An external data response remains in the incoming buffer until a
corresponding external completion response is received. A former buffered
external data response for a particular request number is over-written by a
subsequent external data response for the same request number.

An external ACK completion response frees buffered data to be forwarded to the
caches and other internal resources while an external NACK or ERR completion
response purges any corresponding buffered data. For minimum latency, the
external agent should issue an external ACK completion response coincident with
the first doubleword of an external data response.

External coherency requests that target blocks residing in the incoming buffer are
stalled until the incoming buffer data is forwarded to the secondary cache, and the
instruction that caused the secondary miss is satisfied.

Each doubleword of the incoming buffer has an Uncorrectable Error flag. When
an external data response provides a doubleword, the processor asserts the
corresponding incoming buffer Uncorrectable Error flag if the data quality
indicator, SysCmdl5], is asserted, or if an uncorrectable ECC error is encountered
on the system address/data bus and the ECC check indication on SysCmd][0] is
asserted.

When the processor forwards block data from an incoming buffer entry after
receiving an external ACK completion response, the associated incoming buffer
Uncorrectable Error flags are checked, and if any are asserted, a single Cache Error
exception is posted. When the processor forwards double/single/partial-word
data from an incoming buffer entry after receiving an external ACK completion
response, the associated incoming buffer Uncorrectable Error flag is checked, and
if asserted, a Bus Error exception is posted.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 91

Outgoing Buffer

The System interface contains a five-entry outgoing buffer to provide buffering
for the following;:

e DirtyExclusive blocks that are cast out of the secondary cache because
of a block replacement

e various CACHE instructions

* an external intervention request.

Four 32-word typical entries are associated with the four possible outstanding
processor cached requests allowed by the processor. One 32-word special entry is
reserved for external intervention requests only. The data is stored in each entry
of the outgoing buffer in sequential order, beginning with a secondary cache
block-aligned address.

An instruction or data access that misses in the secondary cache but targets an
entry in the outgoing buffer is stalled until the outgoing buffer entry is issued as
a processor block write request or coherency data response to the System interface
bus.

External coherency requests probe the four typical outgoing buffer entries, with
the following results:

¢ If an external intervention request hits a typical entry, that entry is
converted from a processor block write request to a processor
coherency data response.

¢ If an external invalidate request hits a typical outgoing buffer entry,
that entry is deleted.

¢ If an external intervention request does not hit a typical outgoing
buffer entry, but hits a DirtyExclusive block in the secondary cache, the
special outgoing buffer entry is used to buffer the processor coherency
data response.

A typical outgoing buffer entry containing a block write is ready for issue to the
System interface bus when the first quadword is received from the secondary
cache. The processor allows data to stream from the secondary cache to the
System interface bus through the outgoing buffer.

Errata

An outgoing buffer entry containing a coherency data response is ready for issue
to the System interface bus when the quadword specified by the corresponding
external intervention request is received from the secondary cache. The processor
then allows the data to stream from the secondary cache to the System interface
bus through the outgoing buffer.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

92

Uncached Buffer

Version 2.0 of January 29, 1997

Chapter 6.

Each quadword of the outgoing buffer maintains an Uncorrectable Error flag. If
an uncorrectable error is encountered while a block is being cast out of the
secondary cache, the associated outgoing buffer quadword Uncorrectable Error
flag is asserted. When the processor empties an outgoing buffer entry by issuing
a processor block write or coherency data response, the outgoing buffer
Uncorrectable Error flags are reflected by the data quality indication on
SysCmd[5].

The System interface contains an uncached buffer to provide buffering for
uncached and uncached accelerated load and store operations. All operations
retain program order within the uncached buffer.

The uncached buffer is organized as a 4-entry FIFO followed by a 2-entry gatherer.
Each gathered entry has a capacity of 16 or 32 words, as specified by the
SCBIkSize mode bit.

The uncached buffer begins gathering when an uncached accelerated double or
singleword block-aligned store is executed. Gathering continues if the subsequent
uncached operation executed is an uncached accelerated double or singleword
store to a sequential or identical address. Once a second uncached accelerated
store is gathered, the gathering mode is determined to be sequential or identical.
Gathering continues until one of the following conditions occurs:

* acomplete block is gathered

e an uncached or uncached accelerated load is executed

¢ an uncached or uncached accelerated partial-word store is executed
* an uncached store is executed

* a change in the current gathering mode is observed

* achange in the uncached attribute is observed

When gathering terminates, the data is ready for issue to the System interface bus.
A processor uncached accelerated block write request is used to issue a completely
gathered uncached accelerated block. One or more disjoint processor uncached
accelerated double or singleword write requests are used to issue an incompletely
gathered uncached accelerated block.

When gathering in an identical mode, uncached accelerated double or singleword
stores may be freely mixed. The uncached buffer packs the associated data into the
gatherer. When gathering in sequential mode, uncached accelerated singleword
stores must occur in pairs, to prevent an address error exception. For instance, SW,
SW, SD, SW, SW is legal. SD, SW, SD, is not.

External coherency requests have no effect on the uncached buffer.

CACHE instructions have no effect on the uncached buffer. SYNC instructions are
prevented from graduating if an uncached store resides in the uncached buffer.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 93

6.11 System Interface Flow Control

The System interface supports a maximum request rate of one request per SysClk
cycle, and a maximum data rate of one doubleword per SysClk cycle.

Various flow control mechanisms are provided to limit these rates, as described
below.

Processor Write and Eliminate Request Flow Control
The processor can only issue a processor write or eliminate request if:
¢ the System interface is in master state

* SysWrRdy* was asserted two SysClk cycles previously

Processor Read and Upgrade Request Flow Control

The processor can only issue a processor read or upgrade request if:
¢ the System interface is in master state
* SysRdRdy* was asserted two SysClk cycles previously

¢ the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

¢ there is a free request number

Processor Coherency Data Response Flow Control

The processor can only issue a processor coherency data response if:
¢ the System interface is in master state

* SysWrRdy* was asserted two SysClk cycles previously

External Request Flow Control

When the System interface is in Slave state, it is capable of accepting external
requests. An external agent may issue external requests in adjacent SysClk cycles.

External Data Response Flow Control

Since the processor has an incoming buffer, an external agent may supply external
data response data in adjacent SysClk cycles, without regard to cache bandwidth
or internal resource availability.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

94 Chapter 6.

6.12 System Interface Block Data Ordering

During block data transfers on the System interface SysAD[63:0] bus, even
doublewords (Dat0, Dat2,...) always correspond to SCData[127:64], and odd
doublewords (Datl, Dat3,...) always correspond to SCData[63:0].

External Block Data Responses

During the address cycle of processor block read and upgrade requests, the
processor specifies a quadword-aligned address. The processor expects the
external block data response to be supplied in a subblock order sequence,
beginning at the specified quadword-aligned address.

Processor Coherency Data Responses

The address of external intervention requests are internally aligned by the
processor to a quadword address. If the processor determines that it must issue a
processor coherency data response, it supplies the data in a subblock order
sequence beginning at the quadword-aligned address specified by the
corresponding external coherency request.

Processor Block Write Requests

During the address cycle of processor block write requests, the processor specifies
a cache block-aligned address. During the subsequent data cycles for typical
processor block write requests, the processor supplies the data in sequence,
beginning with the secondary cache block-aligned address.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 95

6.13 System Interface Bus Encoding

This section presents the encoding of the following four System interface buses:
* SysCmd[11:0]
e SysAD[63:0]
e SysState[2:0]
¢ SysResp[4:0]

SysCmd[11:0] Encoding

This section describes address and data cycle encodings for the system command
bus, SysCmd[11:0].

SysCmd[11] Encoding

When SysVal* is asserted, SysCmd[11] indicates whether the SysAD[63:0] bus
represents an address or a data cycle, as shown in Table 6-2.

Table 6-2 Encoding of SysCmd[11]

SysCmd[11] Data/Address Cycle Indication
0 SysADI[63:0] address cycle
1 SysADI[63:0] data cycle

SysCmd[10:0] Address Cycle Encoding

During the address cycle of processor read and upgrade requests, SysCmd[10:8]
contain the request number, as shown in Table 6-3. The request number provides
a mechanism to associate an external response with the corresponding processor
request.

Table 6-3 Encoding of SysCmd[10:8] for Processor Read and Upgrade Requests

SysCmd[10:8] | Request Number I

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

96

Version 2.0 of January 29, 1997

During the address cycle of processor requests, SysCmd|[7:5] contain the

command, as shown in Table 6-4.

Table 6-4 Encoding of SysCmd[7:5] for Processor Requests

Chapter 6.

SysCmd|[7:5]

Command

Coherent block read shared

Coherent block read exclusive

Noncoherent block read

Double/single/partial-word read

Block write

Double/single/partial-word write

Upgrade

N[O W|IN|—|O

Special

During the address cycle of processor read requests, SysCmd|[4:3] contain the read
cause indication, as shown in Table 6-5. This information is useful in handling the
associated external response.

Table 6-5 Encoding of SysCmd[4:3] for Processor Read Requests

SysCmd|[4:3] Read Cause Indication
0 Instruction access
1 Data typical access
2 Data LL/LLD access
3 Data prefetch access

During the address cycle of processor write requests, SysCmd[4:3] contain the
write cause indication, as shown in Table 6-6. This information is useful in
handling the associated write data.

Table 6-6 Encoding of SysCmd[4:3] for Processor Write Requests

SysCmd|[4:3] Write Cause Indication
0 Reserved
1 Data typical access
2 Data uncached accelerated sequential access
3 Data uncached accelerated identical access

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 97

During the address cycle of processor upgrade requests, SysCmd[4:3] contain the
upgrade cause indication, as shown in Table 6-7. This information useful in
handling the associated external response.

Table 6-7 Encoding of SysCmdl[4:3] for Processor Upgrade Requests

SysCmd[4:3] Upgrade Cause Indication
0 Reserved
1 Data typical access
2 Data SC/SCD access
3 Data prefetch access

During the address cycle of processor special requests, SysCmd|[4:3] contain the
processor special cause indication, as shown in Table 6-8. This information
differentiates between the various processor special requests.

Table 6-8 Encoding of SysCmd|[4:3] for Processor Special Requests

SysCmd[4:3] Special Cause Indication
0 Reserved
1 Eliminate
2 Reserved
3 Reserved

During the address cycle of processor block read, typical block write, upgrade,
and eliminate requests, SysCmd[2:1] contain the secondary cache block former
state, as shown in Table 6-9. This information may be useful for system designs
implementing a duplicate tag or a directory-based coherency protocol.

Table 6-9 Encoding of SysCmdl[2:1] for Processor Block Read/Write,
Upgrade, Eliminate Requests

SysCmd[2:1] Secondary Cache Block Former State
0 Invalid
1 Shared
2 CleanExclusive
3 DirtyExclusive

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

98

Version 2.0 of January 29, 1997

Chapter 6.

During the address cycle of processor double/single/partial-word read and write
requests, SysCmd[2:0] contain the data size indication, as shown in Table 6-10.

Table 6-10 Encoding of SysCmd[2:0] for Processor Double/Single/Partial-Word Read/
Write Requests

SysCmd|[2:0] Data Size Indication
One byte valid (Byte)

Two bytes valid (Halfword)

Three bytes valid (Tribyte)

Four bytes valid (Word)

Five bytes valid (Quintibyte)

Six bytes valid (Sextibyte)

Seven bytes valid (Septibyte)

N[O W|IN|~|O

Eight bytes valid (Doubleword)

During the address cycle of external intervention and invalidate requests,
SysCmd[10:8] contain the request number, as shown in Table 6-11. The request
number provides a mechanism to associate a potential processor coherency data
response with the corresponding external coherency request.

Table 6-11 Encoding of SysCmd[10:8] for External Intervention
and Invalidate Requests

SysCmd[10:8] | Request Number I

During the address cycle of external requests, SysCmd|[7:5] contain the command,
as shown in Table 6-12.

Table 6-12 Encoding of SysCmd|[7:5] for External Requests

SysCmd|[7:5] Command

Intervention shared

Intervention exclusive

Allocate request number

Allocate request number

NOP

NOP

Invalidate

N[O W|IN|—|O

Special

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 99

During the address cycle of external special requests, SysCmd[4:3] contain the
external special cause indication, as shown in Table 6-13. This information is used
to differentiate between the various external special requests.

Table 6-13 Encoding of SysCmd[4:3] for External Special Requests

SysCmd[4:3] Special Cause Indication
0 Reserved
1 NOP
2 Interrupt
3 Reserved

Errata

During external address cycles, SysCmd|[0] specifies whether ECC checking and
correcting is to be performed for the SysAD[63:0] bus, as shown in Table 6-14.
During the address cycle of processor block read, data typical block write,
upgrade, and eliminate requests, the processor asserts SysCmd[0]. Consequently,
in a multiprocessor system using the cluster bus, ECC checking and correcting is
enabled for external coherency requests resulting from processor coherent block
read and upgrade requests.

Table 6-14 Encoding of SysCmdl0] for External Address Cycles

SysCmd|[0] ECC check indication
0 ECC checking and correcting disable
1 ECC checking and correcting enable

SysCmd[10:0] Data Cycle Encoding

During the data cycles of an external data response or a processor coherency data
response, SysCmd[10:8] contain the request number associated with the original
request, as shown in Table 6-15.

Table 6-15 Encoding of SysCmd[10:8] for Data Responses

SysCmd[10:8] | Request Number I

During data cycles, SysCmd|[5] indicates the data quality, as shown in Table 6-16.

Table 6-16 Encoding of SysCmdl[5] for Data Cycles

SysCmd|[5] Data quality indication
0 Data is good
1 Data is bad

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

100 Chapter 6.

During data cycles, SysCmd[4:3] indicate the data type, as shown in Table 6-17.
Processor block write and double/single/partial-word write requests use request
data and request last data type indications. External data and processor coherency
data responses use response data and response last data type indications.

Table 6-17 Encoding of SysCmd[4:3] for Data Cycles

SysCmd|[4:3] Data type Indication
0 Request data
1 Response data
2 Request last
3 Response last

During data cycles of an external block data response or processor coherency data
response, SysCmd[2:1] contain the state of the cache block, as shown in Table 6-18.

Table 6-18 Encoding of SysCmd|[2:1] for Block Data Responses

SysCmd|[2:1] Cache Block State
0 Reserved
1 Shared
2 CleanExclusive
3 DirtyExclusive

During data cycles, SysCmd[0] specifies whether ECC checking and correcting is
to be performed for the SysAD[63:0] bus, as shown in Table 6-19. During
processor data cycles, the processor asserts SysCmd[0]. Consequently, in a
multiprocessor system using the cluster bus, ECC checking and correcting will be
enabled for external block data responses resulting from processor coherency data
responses.

Table 6-19 Encoding of SysCmd|[0] for External Data Cycles

SysCmd[0] ECC check indication
0 ECC checking and correcting disable
1 ECC checking and correcting enable

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations

101

SysCmd[11:0] Map
Table 6-20 presents a map for the SysCmd[11:0] bus.
Table 6-20 SysCmd[11:0] Map
Cycle SysCmd[11:0] Bit
Command
Type 1m{w|o[s|7[6] 5 4 | 3 [2]1] o0
Coherent block read shared 0 0 0
Coherent block read exclusive 0 0 1 Block state 1
Request number Read cause
Noncoherent block read 0 1 0
Double/single/partial-word read 0 1 1 Data size
Block write 1 0 0 Block state 1
Processor 0 Write cause |
address Double/single/partial-word write 0 1 0 1 Data size
cycles Upgrade Request number | 1 1 0 Upgrade cause | Block state | 1
Reserved Reserved 0 Reserved
Eliminate 0 0 1 Block state | 1
Special 1 1 1] 5
Reserved Reserved N 1 Reserved
Double/single/partial-word write 0 0 0
Processor -
data cycles Block write 1 Dat.a Data type Block state 1
Coherency data response Request number quality
Intervention shared 0 0 0
ECC
Intervention exclusive 0 0 1
Request number
0 1 0
Allocate request number
0 1 1 X
X
External NOP X ! 0 0
address 0 1 0 1
cycles Invalidate Request number | 1 1 0 ECC
0 0
NOP X
0 1
Special X 1 1 1 X
Interrupt 1 0 ECC
NOP 1 1 X
E | Block data response D Block state
xterna ata
data cycles Double/single/partial-word data 1 | Request number quality Data type X ECC
response

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

102

SysADI[63:0] Encoding

Chapter 6.

This section describes the system address/data bus encoding.

SysADI[63:0] Address Cycle Encoding

SysAD[63:60]

Table 6-21 presents the encoding of the SysAD[63:0] bus for address cycles.

Table 6-21 Encoding of SysADI63:0] for Address Cycles

SysADI[63:60] Target Indication
SysADI63] Target processor with DevNum =3

SysADI[62] Target processor with DevNum = 2

SysAD[61] Target processor with DevNum =1

SysADI60] Target processor with DevNum = 0
SysAD[59:58] | Uncached attribute

SysADI[57] Secondary cache block way indication
SysAD[56:40] | Reserved

SysADI[39:0] Physical address

During the address cycle of processor noncoherent block read, double/single/
partial-word read, block write, double/single/partial-word write, and eliminate
requests, the processor always drives a target indication of 0 on SysAD[63:60].
This indicates that the request targets the external agent only. When the
CohPrcReqTar mode bit is negated, during the address cycle of processor
coherent block read and upgrade requests, the processor also drives a target
indication of 0 on SysAD[63:60]. However, when the CohPrcReqTar mode bit is
asserted, during the address cycle of processor coherent block read and upgrade
requests, the processor drives a target indication of OxF on SysADI[63:60]. This
indicates that the request targets all processors, together with the external agent,
on the cluster bus. In multiprocessor systems using the cluster bus, the
CohPrcReqTar mode bit is asserted for a snoopy-based coherency protocol, and
negated for a duplicate tag or directory-based coherency protocol.

When the processor is in slave state, an external agent uses the target indication
field to specify which processors are targets of an external request.

SysADI[59:58] Uncached Attribute

Version 2.0 of January 29, 1997

During the address cycle of processor double/single/partial-word read and write
requests and during the address cycle of processor Uncached accelerated block write
requests, the processor drives the uncached attribute onto SysAD[59:58]. See the
section titled, Support for Uncached Attribute, in this chapter for more
information.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 103

SysADI[57]
During the address cycle of processor block read, typical block write, upgrade,
and eliminate requests, SysAD[57] contains the secondary cache block way
indication. This information may be useful for system designs implementing a
duplicate tag or a directory-based coherency protocol.
SysAD[56:40]
When processor is in master state, it drives SysAD[56:40] to zero during address
cycles.
SysADI[39:0]
During the address cycle of processor and external requests, SysAD[39:0] contain
the physical address.
Table 6-22 presents the processor request address cycle address alignment.
Table 6-22 Processor Request Address Cycle Alignment
. Address Bits Which
Processor Request Type Address Alignment Are Driven to 0
Block read Quadword 3:0
Doubleword read/write Doubleword 2:0
Singleword read /write Singleword 1:0
Halfword read /write Halfword 0

Byte, tribyte, quintibyte, sextibyte,

septibyte read /write Byte i

5:0 (SCBIkSize = 0)
6:0 (SCBIKSize = 1)

Upgrade Quadword 3:0

5:0 (SCBIkSize = 0)
6:0 (SCBIkSize = 1)

Block write Secondary cache block

Eliminate Secondary cache block

Table 6-23 presents the external coherency request address cycle address
alignment.

Table 6-23 External Coherency Request Address Cycle Alignment

. Address Bits Which
External Request Type Address Alignment Are Ignored
Intervention Quadword 3:0
. 5:0 (SCBIkSize = 0)
Invalidate Secondary cache block 6:0 (SCBIKSize = 1)

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

104

Chapter 6.

SysAD[63:0] Data Cycle Encoding

SysState[2:0] Encoding

Version 2.0 of January 29, 1997

During System interface data cycles, when less than a doubleword is transferred
on the SysAD[63:0] bus, the valid byte lanes depend on the request address and
the MemEnd mode bit.

For example, consider the data cycle for a byte request whose address modulo 8 is
1. When MemEnd is negated (little endian), the SysAD[15:8] byte lane is valid.
When MemEnd is asserted (big endian), the SysADI[55:48] byte lane is valid.

The processor provides a processor coherency state response by driving the
targeted secondary cache block tag quality indication on SysState[2], driving the
targeted secondary cache block former state on SysState[1:0] and asserting
SysStateVal* for one SysClk cycle. Table 6-24 presents the encoding of the
SysState[2:0] bus when SysStateVal* is asserted.

Table 6-24 Encoding of SysState[2:0] when SysStateVal* Asserted

SysState[2] Secondary cache block tag quality indication

0 Tag is good
1 Tag is bad

SysState[1:0] Secondary cache block former state
0 Invalid
1 Shared
2 CleanExclusive
3 DirtyExclusive

When SysStateVal* is negated, SysState[0] indicates if a processor coherency data
response is ready for issue. Table 6-25 presents the encoding of the SysState[2:0]
bus when SysStateVal* is negated.

Table 6-25 Encoding of SysState[2:0]1 When SysStateVal* Negated

SysState[2:1] Reserved
SysState[0] Processor coherency data response indication
0 Not ready for issue
1 Ready for issue

MIPS R10000 Microprocessor User’s Manual

System Interface Operations

SysResp[4:0] Encoding

6.14 Interrupts

Hardware Interrupts

105

An external agent issues an external completion response by driving the request
number associated with the corresponding request on SysResp[4:2], driving the
completion indication on SysResp[1:0], and asserting SysRespVal* for one
SysClk cycle. Table 6-26 presents the encoding of the SysResp[4:0] bus.

Table 6-26 Encoding of SysResp[4:0]

SysResp[4:2] Request number
SysResp[1:0] Completion indication
0 Acknowledge (ACK)
1 Error (ERR)
2 Negative acknowledge (NACK)
3 Reserved

The processor supports five hardware, two software, one timer, and one
nonmaskable interrupt. The Interrupt exception is described in Chapter 17, the
section titled “Interrupt Exception.”

Five hardware interrupts are accessible to an external agent via external interrupt
requests.

An external interrupt request consists of a single address cycle on the System
interface. During the address cycle, SysAD[63:60] specify the target indication,
which allows an external agent to define the target processors of the external
interrupt request. If a processor determines it is an external interrupt request
target, SysAD[20:16] are the write enables for the five individual Interrupt register
bits and SysAD[4:0] are the values to be written into these bits, as shown in Figure
6-5. This allows any subset of the Interrupt register bits to be set or cleared with a
single external interrupt request.

The Interrupt register is an architecturally transparent, level-sensitive register that
is directly readable as bits 14:10 of the Cause register. Since it is level-sensitive, an
interrupt bit must remain asserted until the interrupt is taken, at which time the
interrupt handler must cause a second external interrupt request to clear the bit.

The processor clears the Interrupt register during any of the reset sequences.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

106

Software Interrupts

Timer Interrupt

Nonmaskable Interrupt

Version 2.0 of January 29, 1997

Chapter 6.

8 J IPI0] software
Interrupts
9 IP[1]
SysAD(4:0)
Interrupt Value
10 IP[2]
4 3 2 1 0
11 IP[3]
Hardware
Interrupts
12 IP[4]
13 IP[5
| (5]
20 | 19 | 18 | 17 | 16 IP[6]

SysAD(20:16)

14
Write Enables Timer
15 IP[7] Interrupt

Interrupt register
Cause(15:08)

Figure 6-5 Hardware Interrupts

The two software interrupts are accessible as bits 9:8 of the Cause register, as shown
in Figure 6-5. An MTCO instruction is used to write these bits.

The timer interrupt is accessible as bit 15 of the Cause register, IP[7], as shown in
Figure 6-5. This bit is set when one of the following occurs:

¢ the Count register is equal to the Compare register

* either one of the two performance counters overflows

A nonmaskable interrupt is accessible to an external agent as the SysNMI* signal.
To post a nonmaskable interrupt, an external agent asserts SysNMI* for at least
one SysClk cycle.

The processor recognizes the nonmaskable interrupt on the first SysClk cycle that
SysNMI* is asserted. After the nonmaskable interrupt is serviced, an external
agent may post another nonmaskable interrupt by first negating SysNMI* for at
least one SysClk cycle, and reasserting SysNMI* for at least one SysClk cycle.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations

6.15 Protocol Abbreviations

107

The following abbreviations are used in the System interface protocols:

SysCmd[11:0] Abbreviations

Cmd
BlkRd
RdShd
RdExc
DSPRd
BlkWr
DSPWr
Ugd
Elm
IvnShd
IvnExc
Alc

Ivd

Int
ExtCoh
ReqgDat
RspDat
ReqLst
RspLst
Empty

Unspecified command

Block read request command

Coherent block read shared request command
Coherent block read exclusive request command
Double/single/partial-word read command

Block write request command
Double/single/partial-word write request command
Upgrade request command

Eliminate request command

Intervention shared request command

Intervention exclusive request command

Allocate request number command

Invalidate request command

Interrupt request command

External coherency request command

Request data

Response data

Request last

Response last

Empty; SysCmd(11:0) and SysAD(63:0) are undefined

SysADI[63:0] Abbreviations

Adr
Dat

Dat<n>

Physical address
Unspecified data

Doubleword n of a block

SysState[2:0] Abbreviations

State
Ivd
Shd
ClnExc
DrtExc

MIPS R10000 Microprocessor User’s Manual

Unspecified state
Invalid

Shared
CleanExclusive

DirtyExclusive

Version 2.0 of January 29, 1997

108

Chapter 6.

SysResp[4:0] Abbreviations

Rsp Unspecified completion response

ACK Acknowledge completion response

ERR Error completion response

NACK Negative acknowledge completion response

Master Abbreviations

EA External agent
Pn R10000 processor whose device number is n
- Dead cycle

6.16 System Interface Arbitration

Version 2.0 of January 29, 1997

The processor supports a simple System interface arbitration protocol, which relies
on an external arbiter. This protocol is used in uniprocessor systems,
multiprocessor systems using dedicated external agents, and multiprocessor
systems using the cluster bus. System interface arbitration is handled by the
SysReq*, SysGnt*, and SysRel* signals (request, grant, and release).

As described earlier in this chapter, the System interface resides in either master or
slave state; the processor enters slave state during all of the reset sequences.

When mastership of the System interface changes, there is always one dead
SysClk cycle during which the bidirectional signals are not driven; the processor
ignores all bidirectional signals during this dead SysClk cycle.

The protocol supports overlapped arbitration which allows arbitration to occur in
parallel with requests and responses. This results in fewer wasted cycles when
mastership of the System interface changes.

Grant parking is also supported, allowing a device to retain mastership of the
System interface as long as no other device requests the System interface.

In multiprocessor systems using the cluster bus, the external arbiter typically
implements a round-robin priority scheme.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations

109

System Interface Arbitration Rules

The rules for the System interface arbitration are listed below:

MIPS R10000 Microprocessor User’s Manual

If the System interface is in slave state, and a processor request or
coherency data response is ready for issue, and the required resources
are available (e.g. a free request number, SysRdRdy* asserted, etc.),
the processor asserts SysReq*. The processor will not assert SysReq*
unless all of the above conditions are met.

The processor waits for the assertion of SysGnt*.

When the processor observes the assertion of SysGnt* it negates
SysReq* two SysClk cycles later. Once the processor asserts SysReq*,
it does not negate SysReq* until the assertion of SysGnt*, even if the
need for the System interface bus is contravened by an external
coherency request.

When the processor observes the assertion of SysRel*, it enters master
state two SysClk cycles later, and begins to drive the System interface
bus. SysRel* may be asserted coincidentally with or later than
SysGnt*.

Once in master state, the processor does not relinquish mastership of
the System interface until it observes the negation of SysGnt*.

The processor indicates it is relinquishing mastership of the System
interface bus by asserting SysRel* for one SysClk cycle, two or more
SysClk cycles after the negation of SysGnt*. The processor may issue
any type of processor request or coherency data response in the two
SysClk cycles following the negation of SysGnt*. This may delay the
assertion of SysRel*.

Version 2.0 of January 29, 1997

110

Chapter 6.

Uniprocessor System

Cycle

SysClk
Master
SysReq*
SysGnt*
SysRel*
SysCmd(11:0)
SysVal*

Figure 6-6 shows how the System interface arbitration signals are used in a
uniprocessor system. Note that this same configuration would be used in a
multiprocessor system using dedicated external agents.

SysReq* »| SysReq*
R10000 SysGnt* SysGnt* External
Agent

SysRel* »| SysRel*

Figure 6-6 Arbitration Signals for Uniprocessor System

Figure 6-7 is an example of the operation of the System interface arbitration in a
uniprocessor system. The Master row in the following figures indicates which
device is driving the System interface bidirectional signals (Py and EA in

Figure 6-7). When this row contains a dash (-), as shown in Cycle 12 of Figure 6-7,
mastership of the System interface is changing and no device is driving the System
interface bidirectional signals for this one dead SysClk cycle.

The external agent generally asserts the SysGnt* signal, which allows the
processor to issue requests at any time.

When the external agent needs to return an external data response, it negates
SysGnt* for a minimum of one cycle, waits for the processor to assert SysRel*, and
then begins driving the System interface bus after one dead SysClk cycle.

PPyl Py iPyl - JEALJAIEAL - I Py

inimum of 1 Cylble

: NBkRAX —_ NDSPWiXRealsh(___| ' ' '

: 2 : /

i<—»>>

Figure 6-7 Arbitration Protocol for Uniprocessor System

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations

Multiprocessor System Using Cluster Bus

Cycle
SysClk
Master
SysReq0*
SysGnt0*
SysReql*
SysGntl*
SysReq2*
SysGnt2*
SysReq3*
SysGnt3*
SysRel*
SysCmd(11:0)
SysVal*

111

Figure 6-8 shows how the System interface arbitration signals are used in a four-
processor system using the cluster bus.

R10000,

R10000,

R10000,

R10000;

SysReqg*
SysGnt*
SysRel*

SysReq*
SysGnt*
SysRel*

SysReq*
SysGnt*
SysRel*

SysReq*
SysGnt*
SysRel*

_—
-
—
i}
_—
-
—
i}
_—
-
—
i}
_—
-
—
i}
— |t _—
i} -} ot

SysReq0*
SysGnt0*

SysReq1*
SysGnt1*

External
Agent

SysReq2*
SysGn2*

SysReq3*
SysGnt3*
SysRel*

Figure 6-8 Arbitration Signals for Multiprocessor System Using the Cluster Bus

Figure 6-9 is an example of the System interface arbitration in a four-processor
system using the cluster bus.

'
'
'
!
'
'
N

MIPS R10000 Microprocessor User’s Manual

K BIdeE\ < BIde:X '\

Version 2.0 of January 29, 1997

-\RSQDESXBSQDaiXBSQDaSXBSQDaf

Fiqure 6-9 Arbitration Protocol for Multiprocessor System Using the Cluster Bus

112

Chapter 6.

6.17 System Interface Request and Response Protocol

The following sections detail the System interface request and response protocol.
A 32-word secondary cache block size is assumed in the examples below.

Processor Request Protocol

Version 2.0 of January 29, 1997

A processor request is generated when the R10000 processor requires a system
resource.

The processor may only issue a processor request when the System interface is in
master state. If the System interface is in master state, the processor may issue a
processor request immediately. Processor requests may occur in adjacent SysClk
cycles. If the System interface is not in master state, the processor must first assert
SysReq*, and then wait for the external agent to relinquish mastership of the
System interface bus by asserting SysGnt* and SysRel*.

When multiple, nonconflicting processor requests and/or coherency data
responses are ready and meet all issue requirements, the processor uses the
following priority:

* block read and upgrade requests have the highest priority, followed by
® processor coherency data responses,
® processor eliminate and typical block write requests,

® processor double/single/partial-word read /write and uncached
accelerated block write requests, which have the lowest priority.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations

113

Processor Block Read Request Protocol

FErrata

A processor block read request results from a cached instruction fetch, load, store,
or prefetch that misses in the secondary cache. Before issuing a processor block
read request, the processor changes the secondary cache state to Invalid.

Additionally, if the secondary cache block former state was DirtyExclusive, a write

back is scheduled. Note that if the processor block read request receives an

external NACK or ERR completion response, the secondary cache block state

remains Invalid.

The processor issues a processor block read request with a single address cycle.
The address cycle consists of the following;:

negating SysCmd[11]

driving a free request number on SysCmd[10:8]

driving the block read command on SysCmd[7:5]

driving the read cause indication on SysCmd[4:3]

driving the secondary cache block former state on SysCmd[2:1]
asserting SysCmd[0]

driving the target indication on SysADI[63:60]

driving the secondary cache block way on SysAD[57]

driving the physical address on SysADI[39:0]

asserting SysVal*

The processor may only issue a processor block read request address cycle when
the following are true:

MIPS R10000 Microprocessor User’s Manual

the System interface is in master state
SysRdRdy* was asserted two SysClk cycles earlier
there is no conflicting entry in the outgoing buffer

the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

there is a free request number

the processor is not the target of a conflicting outstanding external
coherency request

Version 2.0 of January 29, 1997

Chapter 6.

114

E
< g
=l
0 = e CRCEEE PEEE B 5 Bl It il B B B B R B B Bl It Il DERT Bt B o o
+ nar
N =i 9]
) WS
=] & cw N .| U O O A A O N A O O O O O O O O
o o o ©
] LS
= n =
>, le]
el AT @ eetgeeeeofeeee- R R S R P A)
© S Q
v ¥ © ®
= < 5 &
v ta.."m I D> U JRURURS N N O O RO A N O O A
g g o< < 5
-~ c .= = <
- B EE e I S S P U 0 Y O O
O ¢ u P» 9
N B
n g mE @
O .= D D P mmeeSGeemelea-e- B ol il ot B T I T O TP BT) it o £t B T T O T
$E 229
rm mlaLn_uL
pV r.mm.t |||||) Y NG NN N RN N NG A N R —— Y A NG N NN RN NN AP N N N -
[T e
AR 1L
fm/ T I G S ol] 5] S N N A O O O O O O O O
(IS SRV & 5
N U g @ = 2
> © O S o
c T R N S, N DS b i S S PR N A A A A
8 Y © 2w 2 S
ma r$a =< M
£ 2 9 E SHCEVES,
N T T I o SERE R B i iP=
8 2o 9
c Cre
W.l 8 o<
. R QU L U O O
S E ac£s
he p..L
% B oo 2
- - -~ L R S B T T o SN
EN = 89 [o= 5
= @ o™ = <
w..hL .m%.m RS SN, U . N>l DU N O N N0 AN O O 9 A O
N o= Qm Y
eo elg
£S5 8z s
Sw SEg g Uy R N o N e B AR R AR
o B N
v T o= j
= e = NG e T 6
P e X
£% 3F 09
@5 S [T Ao
<2 iK.2=E
~ =)
(=) . ~~ ~~
= ~ N o < X O < =
s o = O O
2f§g ¥ H:ra8s:s¢88
L 2 3LEG . 88222
x - T 2 T EEAQOA TS =8 8 s g 8 @
o 5 9 S 8 8
L0 2 xx0x0 0L >0 0 0
[SIN7)] “u o n n n v 0 v »nun nu u nu nu n n nu u u
S > 8 S X > > > 3> > > > > > > > > > >
Oh =20 O O " O O h 6O h 6 h 6O 6"h ©O O h

MIPS R10000 Microprocessor User’s Manual

Figure 6-10 Processor Block Read Request Protocol

Version 2.0 of January 29, 1997

System Interface Operations

115

Processor Double/Single/Partial-Word Read Request Protocol

A processor double/single/partial-word read request results from an uncached
instruction fetch or load.

The processor issues a processor double/single/partial-word read request with a
single address cycle. The address cycle consists of:

negating SysCmd[11]
driving a free request number on SysCmd[10:8]

driving the double/single/partial-word read command on
SysCmd[7:5]

driving the read cause indication on SysCmd[4:3]
driving the data size indication on SysCmd[2:0]
driving the target indication on SysAD[63:60]
driving the uncached attribute on SysAD[59:58]
driving the physical address on SysADI[39:0]
asserting SysVal*

The processor may only issue a processor double/single/partial-word read
request address cycle when:

the System interface is in master state
SysRdRdy* was asserted two SysClk cycles previously

the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

there is a free request number

A single processor may have a maximum of one processor double/single/partial-
word read request outstanding on the System interface at any given time.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

116 Chapter 6.

Figure 6-11 depicts a processor double/single/partial-word read request. Since
the System interface is initially in slave state, the processor must first assert
SysReq* and then wait until the external agent gives up mastership of the System
interface by asserting SysGnt* and SysRel*.

Cycle 1 i 2:3:!4:5:!6:7:8:9:i10:11:12:13: 14 15! 16 : 17 |

SysClk v avalalalalaWaWalaW aWalaWl aWal et oW

Master |EEAEEAEEA§EAE-EPOEPOEPOEPOEPOEPOEPOEPOEPOEPOEPOEPoi
SysReq* A\ b
SysGnt* o e N S S SN SN AN AN S NS S S N S
SysRel* i
SysCmd(11:0) |——————————epm———————————————
sysCmdpar |
SysAD(63:0) | YA X e
SysADChk(7:0) |+

Sysval* i\
SysRdRdy* R U T N N SN SN AN AN S NS NS N N S
SysWrRdy* R U T N N SN SN AN AN S NS S N N S
SysState(2:0) |
SysStatePar e e S S S M S S
SysStateval* |
SysResp(4:0) |t

SysRespPar e e S S S M S S
sysRespvalr |

Figure 6-11 Processor Double/Single/Partial-Word Read Request Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations

Errata

117

Processor Block Write Request Protocol

A processor block write request results from the following:

replacement of a DirtyExclusive secondary cache block due to a load,
store, or prefetch secondary cache miss

a CACHE Index WriteBack Invalidate (S) or Hit WriteBack Invalidate
(S) instruction

a completely gathered uncached accelerated block

As shown in Figure 6-12, the processor issues a processor block write request with
a single address cycle followed by 8 or 16 data cycles.

The address cycle consists of the following:

negating SysCmd[11]

driving the block write command on SysCmd[7:5]
driving the write cause indication on SysCmd[4:3]
driving the target indication on SysAD[63:60]
driving the physical address on SysAD[39:0]
asserting SysVal*

If the processor block write request results from the writeback of a secondary

cache block, the Dirty Exclusive secondary cache block former state is driven on

SysADIJ2:1], the secondary cache block way is driven on SysAD[57] and

SysCmd|[0] is asserted.

If the processor block write request results from a completely gathered uncached

accelerated block, the uncached attribute is driven on SysAD[59:58] and

SysCmd[0] is negated.

Each data cycle consists of the following;:

asserting SysCmd[11]

driving the data quality indication on SysCmd[5]
driving the data type indication on SysCmd[4:3]
driving the data on SysAD[63:0]

asserting SysVal*

The first 7 or 15 data cycles have a request data type indication, and the last data
cycle has a request last data type indication.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

118 Chapter 6.

The processor may negate SysVal* between data cycles of a processor block write
request only if the SCClk frequency is less than half of the SysClk frequency.

The processor may only issue a processor block write request address cycle when
the following are true:

® the System interface is in master state
¢ SysWrRdy* was asserted two SysClk cycles previously

¢ the processor is not the target of a conflicting outstanding external
coherency request

Figure 6-12 depicts two adjacent processor block write requests. Since the System
interface is initially in slave state, the processor must first assert SysReq* and then
wait until the external agent relinquishes mastership of the System interface by
asserting SysGnt* and SysRel*.

Cycle
SysClk

Master

I

I

I

SysReq* |

SysGnt* |

SysRel* |

SysCmd(11:0) |

SysCmdPar |

SysAD(63:0) |
SysADChk(7:0) |

I

I

I

I

I

I

I

I

I

SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar

SysStateVal*
SysResp(4:0)

SysRespPar

SysRespVal*

Figure 6-12 Processor Block Write Request Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 119

Processor Double/Single/Partial-Word Write Request Protocol

A processor double/single/partial-word write request results from an uncached
store or incompletely gathered uncached accelerated block.

As shown in Figure 6-13, the processor issues a processor double/single/partial-
word write request with a single address cycle immediately followed by a single
data cycle.

The address cycle consists of the following:
* negating SysCmd[11]

e driving the double/single/partial-word write command on
SysCmd[7:5]

e driving the write cause indication on SysCmd[4:3]
¢ driving the data size indication on SysCmd[2:0]
* driving the target indication on SysADI[63:60]
¢ driving the uncached attribute on SysAD[59:58]
¢ driving the physical address on SysAD[39:0]
* asserting SysVal*
The data cycle consists of the following:
* asserting SysCmd[11]
e driving the request last data type indication on SysCmd[4:3]
¢ driving the write data on SysAD[63:0]

* asserting SysVal*

The processor may only issue a processor double/single/partial-word write
request address cycle when the System interface is in master state and SysWrRdy*
was asserted two SysClk cycles previously.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

120 Chapter 6.

Figure 6-13 depicts three processor double/single/partial write requests. Since
the System interface is initially in slave state, the processor must first assert
SysReq* and then wait until the external agent relinquishes mastership of the
System interface by asserting SysGnt* and SysRel*.

Cycle 1 i 2:3:4:i5:!6:7:8:9 1011121314 15 16 17
SysClk aValalaUalalalal aUalalal ol aWalaWal

Master |EEAEEAEEA§EAE-EPOEPO:POEPOEPOEPOEPOEPOEPOEPOEPOEPoi
SysReq* i\ b
SysGnt* s as R A S S S S S NS S S S S N N
L T e N S T R N R A
SysCmd(11:0) |)ooPWhRedsk | XosPwiPedls)OSPWIReds | |
SysCmdPar [S S S S G GRS GRS S S G GRS S G G S S
SysAD(63:0) K : : : ARG X Dat | WCAd X Dat X Adr X Dai X
SysADChK(7:0) |+
SysVal* |\ A\ i
SysRdRdy* 1 S S N S S S S SN TS NS SN S S S N N
SysWrRdy* R U T N N SN SN AN AN S NS S N N S
SysState(2:0) |
SysStatePar e e S S S M S S
SysStateval* |
SysResp(4:0) |
SysRespPar e e S S S M S S
sysRespvalr |

Figure 6-13 Processor Double/Single/Partial-Word Write Request Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations

121

Processor Upgrade Request Protocol

A processor upgrade request results from a store or prefetch exclusive that hits a
Shared block in the secondary cache.

As shown in Figure 6-14, the processor issues a processor upgrade request with a
single address cycle. This address cycle consists of the following:

negating SysCmd[11]

driving a free request number on SysCmd[10:8]

driving the upgrade command on SysCmd[7:5]

driving the upgrade cause indication on SysCmd[4:3]

driving the secondary cache block former state on SysCmd[2:1]
asserting SysCmd[0]

driving the target indication on SysADI[63:60]

driving the secondary cache block way on SysAD[57]

driving the physical address on SysAD[39:0]

asserting SysVal*

The processor may only issue a processor upgrade request address cycle when the
following are true:

the System interface is in master state
SysRdRdy* was asserted two SysClk cycles previously

the maximum number of outstanding processor requests specified by
the PrcReqMax mode bits is not exceeded

there is a free request number

the processor is not the target of a conflicting outstanding external
coherency request

A single processor may have as many as four processor upgrade requests
outstanding on the System interface at any given time.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

Chapter 6.

122

Figure 6-14 depicts four processor upgrade requests. Since the System interface is

X Adr X |

?(Adr?(Adr?(:

X Ad X |

p—
£
50
o=
=B
c -
z 3 =
g o
> [{e)
..hLb \
9y
Q
§ 8 4
* o= ____
o &
o ¢ <
R.l —
Sm
>
wn &)
- -
o
[)) N
]
S 5 -
e T
£° .
- R
um S
£ T
I~
S g >
a g
I
23
g c ®
p.m
o
< o ™~
= &,
Qe T
w = 9 ©
S Z &
SnS
[CERI e
> o0 W [Ty}
8 &g
s.nl.an |||||
IS
.mjmﬁ <
=% & 7
s v 0 ™
Hu 2
£ n
N
—
=
L O
S 2
O o

Master

||||||| J--- 2.
=l
(=2
>
||||||| J--- 2.
||||||| J--- 2.
=l
(=2
>
||||||| J--- 2.
=l
(=2
>
||||||| J--- 2.
||||||| J--- 2.
=l
(=2
>
o R R N <.
~
e
—
-
N =
o L ox 2
© © o £
x O xx O
n 0 n v
>SN >N > A
n n O un

SysCmdPar
SysAD(63:0)

SysADChk(7:0)

SysVal*

SysRdRdy*
SysWrRdy*

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)

SysRespPar

SysRespVal*

Figure 6-14 Processor Upgrade Request Protocol

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

System Interface Operations

123

Processor Eliminate Request Protocol

A processor eliminate request results from the following:

a cached instruction fetch, load, store, or prefetch that misses in the
secondary cache and forces the replacement of a Shared or
CleanExclusive secondary cache block

a CACHE Index WriteBack Invalidate (S), Hit Invalidate (S), or Hit
WriteBack Invalidate (S) instruction that forces the invalidation of a
Shared or CleanExclusive secondary cache block

a CACHE Hit Invalidate (S) instruction that forces the invalidation of
a DirtyExclusive secondary cache block.

A processor eliminate request notifies the external agent that a Shared,
CleanExclusive, or DirtyExclusive block has been eliminated from the secondary
cache. Such requests are useful for systems implementing a directory-based
coherency protocol, and are enabled by asserting the PrcElmReq mode bit.

The processor issues a processor eliminate request with a single address cycle.
This address cycle consists of the following:

negating SysCmd[11]

driving the special command on SysCmd[7:5]

driving the eliminate special cause indication on SysCmd[4:3]
driving the secondary cache block former state on SysCmd[2:1]
asserting SysCmd[0]

driving the target indication on SysADI[63:60]

driving the secondary cache block way on SysAD[57]

driving the physical address of the eliminated secondary cache block
on SysAD[39:0]

asserting SysVal*

The processor may only issue a processor eliminate request address cycle when
the following are true:

MIPS R10000 Microprocessor User’s Manual

the System interface is in master state
SysWrRdy* was asserted two SysClk cycles previously
the PrcEImReq mode bit is asserted

the processor is not the target of a conflicting outstanding external
coherency request

Version 2.0 of January 29, 1997

Chapter 6.

124

Figure 6-15 depicts three processor eliminate requests. Since the System interface

isinitially in slave state, the processor must first assert SysReq* and then wait until
the external agent relinquishes mastership of the System interface by asserting

SysGnt* and SysRel*.

l - ol
£
[}
l - ol
l - ol
£
[}
l - ol
£
[}
..... <

?(Adr?(

WA D(Adr X

Cycle

SysClk

Master

SysReq*
SysGnt*

SysRel*

SysCmd(11:0)
SysCmdPar
SysAD(63:0)

.X..u....
<o
o NS
R
<o
g
Lt
= 5
kel
O x @
O ®© T
< >
%2 [[
> > >
nw un n

SysWrRdy*

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)

SysRespPar

SysRespVal*

Figure 6-15 Processor Eliminate Request Protocol

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

System Interface Operations 125

Processor Request Flow Control Protocol

The processor provides the signals SysRdRdy* and SysWrRdy* to allow an
external agent to control the flow of processor requests. SysRdRdy* controls the
flow of processor read and upgrade requests whereas SysWrRdy* controls the
flow of processor write and eliminate requests.

The processor can only issue a processor read or upgrade request address cycle to
the System interface if SysRdRdy* was asserted two SysClk cycles previously.
Similarly, the processor can only issue the address cycle of a processor write or
eliminate request to the System interface if SysWrRdy* was asserted two SysClk
cycles previously.

To determine the processor request buffering requirements for the external agent,
note that the processor can issue any combination of processor requests in
adjacent SysClk cycles. Also, since the System interface operates register-to-
register with the external agent, a round trip delay of four SysClk cycles occurs
between a processor request address cycle which prompts the external agent for
flow control, and the flow control actually preventing any additional processor
request address cycles from occurring. Consequently, if the maximum number of
outstanding processor requests specified by the PrcReqMax mode bits is four, the
external agent must be able to accept at least four processor read or upgrade
requests. Also, the external agent must be able to accept at least four processor
eliminate requests, two processor double/single/partial-word write requests, or
one processor block write request.

Figure 6-16 depicts three processor double/single/partial-word write requests
and four processor block read requests. After sensing the first processor double/
single/partial-word write request, the external agent negates SysWrRdy*. The
external agent must have buffering sufficient for one additional processor write
request before the flow control takes effect.

The external agent negates SysRdRdy* upon observing the first processor read
request. The external agent must have buffering sufficient for three additional
processor read requests before the flow control takes effect.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

126 Chapter 6.

Cycle
SysClk

Master

SysReq*
SysGnt*
SysRel*
SysCmd(11:0)

|

|

|

|

|

| : : : : : : : : : : : : : : : : :

I XDSPWiXRedLs¥DSPWiXRedLsi__ XDSPWiXRedLsi{__ XBKRIX___XBKRAXBKRAX___XBkRIX___:
SysCmdPar | XX XX X
SysAD(63:0) | :)(Adrm:XAdrm:}(:)(Adrm:x :)(Adr:)(:XAdr:XAdr:X :XAdr:X
SYSADCHK(7:0) | X XK X)X XX XK XX

|

|

|

|

|

|

|

|

|

Sysval* : : : : \ : : : \ : \ : : \ :
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar

SysStateVal*
SysResp(4:0)

SysRespPar

SysRespVal*

Figure 6-16 Processor Request Flow Control Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 127

External Response Protocol

The processor supports two classes of external responses:

* external data responses provide a double/single/partial-word of data
or provide a block of data using the SysAD[63:0] bus

* external completion responses provide an acknowledge, error, or
negative acknowledge indication using the SysResp[4:0] bus

An external agent may only issue an external data response to the processor when
the System interface is in slave state. If the System interface is not already in slave
state, the external agent must first negate SysGnt* and then wait for the processor
to assert SysRel*. If the System interface is already in slave state, the external
agent may issue an external data response immediately.

External data responses may be accepted by the processor in adjacent SysClk
cycles and in arbitrary order, relative to corresponding processor requests.

An external agent may issue an external completion response when the System
interface is in either master or slave state. External completion responses may be
accepted by the processor in adjacent SysClk cycles and in arbitrary order,
relative to the corresponding processor requests.

External Block Data Response Protocol

An external agent may issue an external block data response in response to a
processor block read or upgrade request.

An external agent issues an external block data response with 8 or 16 data cycles.
Each data cycle consists of the following:

¢ asserting SysCmd[11]

e driving the request number associated with the corresponding
processor request on SysCmd[10:8]

e driving the data quality indication on SysCmd[5]
e driving the data type indication on SysCmd[4:3]
* driving the cache block state on SysCmd[2:1]

¢ driving the ECC check indication on SysCmd[0]
¢ driving the data on SysAD[63:0]

* asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data
cycle has a response last data type indication. The external agent may negate
SysVal* between data cycles of an external block data response.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

128

Cycle
SysClk

Master

Chapter 6.

External block data response data must be supplied in subblock order, beginning
with the quadword-aligned address specified by the corresponding processor
request.

External block data responses for processor coherent block read shared or
noncoherent block read requests may indicate a state of Shared, CleanExclusive, or
DirtyExclusive. External block data responses for processor coherent block read
exclusive or upgrade requests may indicate a state of CleanExclusive or
DirtyExclusive.

Figure 6-17 depicts two processor block read requests and the corresponding
external block data responses.

EA !

e
o

SysReq*
SysGnt*

SysRel*

I_

K---k-e-mmmmep e

SysCmd(11:0)

SysCmdPar

SysAD(63:0)

e e — —
s - (/’(/’ ——
———— —

| | L

SysVal*
SysRdRdy*

N

SysWrRdy*

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)

SysRespPar

I
I
I
I
I
I
I
I
I
SysADChk(7:0) |
I
I
I
I
I
I
I
I
I

SysRespVal*

Version 2.0 of January 29, 1997

T T T T " T I rrrr—-nr"-—""7%VVvVYY Y-~

Figure 6-17 External Block Data Response Protocol

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 129

External Double/Single/Partial-Word Data Response Protocol

An external agent may issue an external double/single/partial-word data
response in response to a processor double/single/partial-word read request.

An external agent issues an external double/single/partial-word data response
with a single data cycle; the data cycle consists of:

* asserting SysCmd[11]

¢ driving the request number associated with the corresponding
processor request on SysCmd[10:8]

e driving the data quality indication on SysCmd|[5]

¢ driving the response last data type indication on SysCmd[4:3]
¢ driving the ECC check indication on SysCmd[0]

e driving the data on SysADI[63:0]

* asserting SysVal*

Figure 6-18 depicts a processor double/single/partial-word read request and the
corresponding external double/single/partial-word data response.

SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar

—~

SysStateVal*
SysResp(4:0)

~1__—

L e el

Cycle P11 213141516 i 7:i8:09 11011112113 1415} 16 | 17 |
SysClk I ; I I I I / / / / / : : I ; ; ; ;
Master ' :
SysReq* ;
SysGnt* : :
SysRel* ; : ;
SysCmd(11:0) @w /
SysCmdPar : I’ :/ I’
SysAD(63:0) : % /
>

| 1

SysRespPar

I
I
I
I
I
I
I
I
I
SysADChk(7:0) |
I
I
I
I
I
I
I
I
I

T I " I rrirrr-"r1——>72 XXX & T7T" """ '["""°7%§y "

5 a —

T T I I " I I rr-rn’r"1r———7"VvVVY ' VY VY-

SysRespVal*

:U:

Figure 6-18 External Double/Single/Partial-Word Data Response Protocol

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

130

Chapter 6.

External Completion Response Protocol

Version 2.0 of January 29, 1997

An external agent issues an external completion response to provide an
acknowledge, error, or negative acknowledge to an outstanding request, and to
free the associated request number.

An external agent issues an external completion response by driving the response
on SysResp[4:0] and asserting SysRespVal* for one SysClk cycle. SysResp[4:2]
contains the request number associated with the corresponding outstanding
request and SysResp[1:0] contains an acknowledge, error, or negative
acknowledge indication, as described below:

The external agent issues an external ACK completion response for a
processor read or upgrade request to indicate that the request was
successful. An external ACK completion response may only be issued
for a processor read request if a corresponding external data response
is coincidentally or previously issued.

The external agent issues an external ERR completion response for a
processor read or upgrade request to indicate that the request was
unsuccessful. Upon receiving an external ERR completion response, the
processor takes a Bus Error exception on the associated instruction. If
the processor read or upgrade request was caused by a PREFETCH
instruction, no exception is taken. Also, if the request was caused by a
speculative instruction, no exception is taken.

The external agent issues an external NACK completion response for a
processor read or upgrade request to indicate that the request was not
accepted. Upon receiving an external NACK completion response, the
processor re-evaluates the associated instruction. Due to the
speculative nature of the R10000 processor, the re-evaluation may or
may not result in the reissue of a similar processor request.

An external ERR or NACK completion response issued in response to an external
intervention, allocate request number, or invalidate has no affect on the processor
except to free the request number.

MIPS R10000 Microprocessor User’s Manual

131

System Interface Operations

Figure 6-19 depicts a processor upgrade request and a corresponding external

completion response.

Cycle

SysClk

Master

SysReq*
SysGnt*

SysRel*

SysCmd(11:0)
SysCmdPar

SysAD(63:0)

SysADChk(7:0)

SysVal*

SysRdRdy*
SysWrRdy*

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)
SysRespPar

SysRespVal*

Figure 6-19 External Completion Response Protocol

Version 2.0 of January 29, 1997

MIPS R10000 Microprocessor User’s Manual

132

External Request Protocol

‘Errata

Version 2.0 of January 29, 1997

Chapter 6.

An external agent issues an external request when it requires a resource within the
processor. The external agent refers to any device attached to the processor system

interface. It may be memory interface or cluster coordinator ASIC, or another
processor residing on the cluster bus.

An external agent may only issue an external request to the processor when the
System interface is in slave state. If the System interface is not already in slave
state, the external agent must first negate SysGnt* and then wait for the processor
to assert SysRel*. If the System interface is already in slave state, the external
agent may issue an external requestimmediately. The total number of outstanding
external requests, including interventions, allocate request numbers, and
invalidates, cannot exceed eight.

External requests may be accepted by the processor in adjacent SysClk cycles.
External intervention and invalidate requests are considered external coherency
requests.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 133

External Intervention Request Protocol

An external agent issues an external intervention request to obtain a Shared or
Exclusive copy of a secondary cache block.

An external agent issues an external intervention request with a single address
cycle; this address cycle consists of the following:

* negating SysCmd[11]

* driving a request number on SysCmd[10:8]

* driving the intervention command on SysCmd[7:5]
¢ driving the ECC check indication on SysCmd[0]

e driving the target indication on SysAD[63:60]

e driving the physical address on SysAD[39:0]

* asserting SysVal*

An external agent may only issue an external intervention request address cycle
when the System interface is in slave state; typically a free request number is
specified. An external agent may have as many as eight external intervention
requests outstanding on the System interface at any given time.

Figure 6-20 depicts three external intervention requests. Since the System
interface is initially in master state, the external agent must first negate SysGnt*
and then wait until the processor relinquishes mastership of the System interface
by asserting SysRel*.

Cycle
SysClk

Master Po | Po i Py i Py i Py EA | EA | EA | EA | EA I EA I EA I EA I EA | EA | EA

I

I

I
SysReq* |
SysGnt* |
SysRel* |
SysCmd(11:0) |
SysCmdPar |
SysAD(63:0) |
SysADChk(7:0) |
I

I

I

I

I

I

I

I

I

lvnSh

IvnExcXlvnShd)

Adr

SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar

SysStateVal*
SysResp(4:0)

SysRespPar

!
!
e
Y

SysRespVal*

X

X
rIXAdrIX
X

Figure 6-20 External Intervention Request Protocol

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

134 Chapter 6.

External Allocate Request Number Request Protocol

An external agent issues an external allocate request number request to reserve a
request number for private use. Once allocated, the processor is prevented from
using the request number until an external completion response for the request
number is received.

An external agent issues an external allocate request number request with a single
address cycle; this address cycle consists of the following:

* negating SysCmd[11]
® driving a free request number on SysCmd[10:8]
¢ driving the allocate request number command on SysCmd|[7:5]

* asserting SysVal*

An external agent may only issue an external allocate request number request
address cycle when the System interface is in slave state and there is a free request
number. The external agent may have as many as eight external allocate request
number requests outstanding on the System interface at any given time.

Figure 6-21 depicts three external allocate request number requests. Since the
System interface is initially in master state, the external agent must first negate
SysGnt* and then wait until the processor relinquishes mastership of the System
interface by asserting SysRel*.

Cycle
SysClk

Master

I

I

I

SysReq* |

SysGnt* |

SysRel* |

SysCmd(11:0) |

SysCmdPar |

SysAD(63:0) |
SysADChk(7:0) ||

I

I

I

I

I

I

I

I

I

Alc

SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)

SysStatePar

SysStateVal*
SysResp(4:0)

SysRespPar

SysRespVal*

Figure 6-21 External Allocate Request Number Request Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 135

External Invalidate Request Protocol

An external agent issues an external invalidate request to invalidate a secondary
cache block.

An external agent issues an external invalidate request with a single address cycle.
This address cycle consists of the following:

* negating SysCmd[11]

* driving a request number on SysCmd[10:8]

¢ driving the invalidate command on SysCmd[7:5]
¢ driving the ECC check indication on SysCmd[0]
e driving the target indication on SysAD[63:60]

e driving the physical address on SysAD[39:0]

* asserting SysVal*

An external agent may only issue an external invalidate request address cycle
when the System interface is in slave state; typically a free request number is
specified. An external agent may have as many as eight external invalidate
requests outstanding on the System interface at any given time.

Figure 6-22 depicts three external invalidate requests. Since the System interface
is initially in master state, the external agent must first negate SysGnt* and then
wait until the processor relinquishes mastership of the System interface by
asserting SysRel*.

Cycle
SysClk

Master Pg ! Pt Pg ' Py ! Pg

EA !

EA I EA 1 EA I EA I EA 1 EA | EA | EA | EA | EA

I

I

I
SysReq* |
SysGnt* |
SysRel* |
SysCmd(11:0) |
SysCmdPar |
SysAD(63:0) |
SysADChk(7:0) |
I

I

I

I

I

I

I

I

I

Ivd

SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar

SysStateVal*
SysResp(4:0)

SysRespPar

X
X
Adr IX
Y

SysRespVal*

Figure 6-22 External Invalidate Request Protocol

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

136 Chapter 6.

External Interrupt Request Protocol

An external agent issues an external interrupt request to interrupt the normal
instruction flow of the processor.

An external agent issues an external interrupt request with a single address cycle.
This address cycle consists of the following:

* negating SysCmd[11]

¢ driving the special command on SysCmd[7:5]

e driving the interrupt special cause indication on SysCmd[4:3]
¢ driving the ECC check indication on SysCmd[0]

e driving the target indication on SysAD[63:60]

e driving the Interrupt register write enables on SysAD[20:16]

e driving the Interrupt register values on SysADI[4:0]

* asserting SysVal*

An external agent may only issue an external interrupt request address cycle when
the System interface is in slave state.

Figure 6-23 depicts three external interrupt requests. Since the System interface is
initially in master state, the external agent must first negate SysGnt* and then wait
until the processor relinquishes mastership of the System interface by asserting
SysRel*.

Cycle
SysClk

1i2:3i4i5{6:{7i{8i9i!10{11{12} 13|14} 15 16 | 17 |

SysRel*

Master ' Pp i Pp i Pp i Pyt Py - EA | EA | EA: EA | EA | EA | EA | EA | EA | EA | EA
SysReq* E E — E T
SysGnt* : v — E T

Int X X Int X Int X

SysCmd(11:0)

I

I

I

I

I

I

I
SysCmdPar |
SysAD(63:0) |
SysADChk(7:0) |
I

I

I

I

I

I

I

I

I

NV Y Y

SysVal*
SysRdRdy*
SysWrRdy*
SysState(2:0)
SysStatePar

SysStateVal*
SysResp(4:0)
SysRespPar

SysRespVal*

Figure 6-23 External Interrupt Request Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 137

Processor Response Protocol

Processor responses are supplied by the processor in response to external
coherency requests that target the processor. The R10000 processor issues a
processor coherency state response for each external coherency request that
targets the processor. The processor issues a processor coherency data response
for each external intervention request that targets the processor and hits a
DirtyExclusive secondary cache block.

Processor coherency state responses are issued by the processor in the same order
that the corresponding external coherency requests are received. Processor
coherency state and data responses may occur in adjacent SysClk cycles.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

138 Chapter 6.

Processor Coherency State Response Protocol

A processor coherency state response results from an external coherency request
that targets the processor.

Errata

The processor issues a processor coherency state response by driving the
secondary cache block tag quality indication on SysState[2], driving the secondary
cache block former state on SysState[1:0], and asserting SysStateVal* for one
SysClk cycle. The processor coherency state responses are issued in an order
designated by the external coherency requests and will always be issued before an
associated processor coherency data response. Note that processor coherency
state responses can be pipelined ahead of the associated processor coherency data
responses, and processor coherency data responses can be returned out-of-order.
These cases typically arise from external coherency requests hitting outgoing
buffer entries.
Figure 6-24 depicts two external coherency requests and the resulting processor
coherency state responses.

Cycle f1i2i3iaisiei7isio

SysClk AWV alalaWalWaWaw

Master i Po i Po i Po i Po Py i - i EAEA |

SysReq* | T S s S S e R

sysGnt* [s s S s N N

SysRel T T

Syscmaar0) | i

Syscmapar | e

SysAD(63:0) [S S S S Sy v G

SysADChk(7:0) |71 T T %

Sysval* T T

SysRdRdy* I

SysWrRdy* HE I A R

SysState(2:0) |

SysStatePar | : : : : : : : : :

SysStateVal* | E E E E E E E E E

SysResp) |

SysRespPar I : : : : : : : : : : :

SysRespVal* | :]/]/

.Figu.re 6-24 Processor Cbherehcy State Respohse Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 139

Processor Coherency Data Response Protocol

A processor coherency data response results from an external intervention request
that targets the processor and hits a DirtyExclusive secondary cache block.

The processor issues a processor coherency data response with a single empty
cycle followed by either 8 or 16 data cycles. The empty cycle consists of negating
SysVal* for a single SysClk cycle. The data cycles consist of the following:

e asserting SysCmd[11]

¢ driving the request number associated with the corresponding
external coherency request on SysCmd[10:8]

e driving the data quality indication on SysCmd|[5]

* driving the data type indication on SysCmd[4:3]

¢ driving the state of the cache block on SysCmd[2:1]

* asserting SysCmd][0]

e driving the data on SysAD[63:0],

* asserting SysVal*

The first 7 or 15 data cycles have a response data type indication, and the last data
cycle has a response last data indication. The processor may negate SysVal*
between data cycles of a processor coherency data response only if the SCClk
frequency is less than half of the SysClk frequency.

The processor may only issue a processor coherency data response when the
System interface is in master state and SysWrRdy* was asserted two SysClk
cycles previously. Note that the empty cycle is considered the issue cycle for a
processor coherency data response. If the System interface is not already in
master state, the processor must first assert SysReq*, and then wait for the
external agent to relinquish mastership of the System interface bus by asserting
SysGnt* and SysRel*. If the System interface is already in master state, the
processor may issue a processor coherency data response immediately.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

140 Chapter 6.

Errata

When SysStateVal* is negated, SysState[0] provides the processor coherency data
response indication. The processor asserts the processor coherency data response
indication when there are one or more processor coherency data responses
pending issue in the outgoing buffer. Once asserted, the indication is negated
when the first doubleword of the last pending issue processor coherency data
response is issued to the system interface bus. The processor coherency data
response indication is not affected by SysWrRdy*. However, as previously noted
the processor may only issue a processor coherency data response when
SysWrRdy* was asserted two SysClk cycles previously.
Processor coherency data response data is supplied in subblock order, beginning
with the quadword-aligned address specified by the corresponding external
coherency request. Processor coherency data responses are not necessarily issued
in the same order as the external coherency requests; however each processor
coherency data response always follows the corresponding processor coherency
state response. Note that more than one processor coherency state response may
be pipelined ahead of the corresponding processor coherency data responses.
Figure 6-25 depicts one external coherency request and the resulting processor
coherency state and data responses.

Cycle

SysClk

Master

SysReq*

SysGnt*

SysRel* . . .\ ' :

SysCmd(11:0) >«

SysCmdPar '\ .\

SysAD(63:0) >« Z

SysADChk(7:0) >«

SysVal* . . . :\ :

SysRdRdy* N R R N N

SysWery* 1 1 i 1 1 ; 1 1 1 H

SysState(2:0) 1

SysStatePar

SysStateVal* L \\ L

SysResp(4:0) i

SysRespPar (\(\

SysRespVal* —

Figure 6-25 Processor Coherency Data Response Protocol

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations

141

6.18 System Interface Coherency

The System interface supports external intervention shared, intervention
exclusive, and invalidate coherency requests. These requests are used by an
external agent or other R10000 processors on the cluster bus to maintain cache
coherency.

Each external coherency request that targets an R10000 results in a processor
coherency state response. Additionally, each external intervention request that
targets the R10000 and hits a DirtyExclusive secondary cache block results in a
processor coherency data response.

External coherency requests and the corresponding processor coherency state
responses are handled in FIFO order.

External Intervention Shared Request

An external intervention shared request is used by an external agent to obtain a
Shared copy of a cache block. If the desired block resides in the processor cache, it
is marked Shared.

If the secondary cache block’s former state was DirtyExclusive, the processor
issues a processor coherency data response.

External Intervention Exclusive Request

An external intervention exclusive request is used by an external agent to obtain
an Exclusive copy of a cache block. If the desired block resides in the processor
cache, it is marked Invalid.

If the secondary cache block’s former state was DirtyExclusive, the processor
issues a processor coherency data response.

External Invalidate Request

An external invalidate request is used by an external agent to invalidate a cache
block. If the desired block resides in the processor cache, it is marked Invalid.

Under normal circumstances, the secondary cache block former state should not
be CleanExclusive or DirtyExclusive.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

142 Chapter 6.

External Coherency Request Action

Table 6-27 indicates the action taken for external coherency requests that target the
processor.

Table 6-27 Action Taken for External Coherency Requests that Target the R10000 Processor’

Processor Processor Processor
Secondary Cache Type of Secondary Coherency State Coherency Coherency Data
Block Cache Block Data
External Request Response Response State
Former State New State Response
SysState[1:0] . SysCmd[2:1]
Required?
Intervention shared Invalid 0 No N/A
Invalid Intervention exclusive Invalid 0 No N/A
Invalidate Invalid 0 No N/A
Intervention shared Shared 1 No N/A
Shared Intervention exclusive Invalid 1 No N/A
Invalidate Invalid 1 No N/A
Intervention shared Shared 2 No N/A
CleanExclusive Intervention exclusive Invalid 2 No N/A
Invalidate? Invalid 2 No N/A
Intervention shared” Shared 3 Yes Shared
DirtyExclusive | Intervention exclusive Invalid 3 Yes DirtyExclusive
Invalidate™ Invalid 3 No N/A

1 This should not occur under normal circumstances.

* The processor coherency data response must be written back to memory.

1 These actions are taken in cases where there are no internal coherency conflicts. For
exceptions due to internal coherency conflicts, please refer to Table 6-28.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations

Coherency Conflicts

143

Coherency conflicts arise when a processor request and an external request target
the same secondary cache block. Coherency conflicts may be categorized as either
internal or external, and are described in this section.

Internal Coherency Conflicts

A processor request is considered to be pending issue when it is buffered in the

processor and has not yet been issued to the System interface bus. Internal

coherency conflicts occur when the processor has a processor request pending

issue and a conflicting external coherency request is received. Internal coherency
conflicts are unavoidable and cannot be anticipated by the external agent since it
cannot anticipate when the processor will have processor requests pending issue.

Table 6-28 describes the manner in which the processor resolves internal

coherency conflicts.

Table 6-28 Internal Coherency Conflict Resolution

Processor Request
Pending Issue

Conflicting External
Coherency Request

Resolution

Coherent block read

Intervention shared

Intervention exclusive

Invalidate

The processor allows the conflicting external
coherency request to proceed and provides an
Invalid processor coherency state response. The
processor stalls the processor coherent block
read request until the conflicting external
coherency request has received an external
completion response.

Upgrade

Intervention shared

Intervention exclusive

Invalidate

The processor allows the conflicting external
coherency request to proceed and provides a
Shared processor coherency state response. Once
the conflicting external coherency request has
received an external completion response, the
processor internally NACKSs the processor
upgrade request that is pending issue.

Block write

Intervention shared

Intervention exclusive

The processor provides a DirtyExclusive
processor coherency state response and changes
the processor block write request that is pending
issue into a DirtyExclusive processor coherency
data response.

Invalidate

The processor provides a DirtyExclusive
processor coherency state response and deletes
the processor block write request that is pending
issue.

Eliminate

Intervention shared

Intervention exclusive

Invalidate

The processor provides a Shared or
CleanExclusive processor coherency state
response and deletes the processor eliminate
request that is pending issue.

1 If the processor eliminate request that is pending issue has a DirtyExclusive state, a CleanExclusive processor coherency state

response is provided.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

144

Chapter 6.

External Coherency Conflicts

FErrata

Version 2.0 of January 29, 1997

A processor request is considered to be pending response when it has been issued
to the System interface bus but has not yet received an external data or completion
response. External coherency conflicts occur when the processor has a processor
request that is pending response and a conflicting external coherency request is
received. The processor relies on the external agent to detect and resolve external
coherency conflicts. If the external agent chooses to issue an external coherency
request to the processor which causes an external coherency conflict, the external

coherency request must be completed before an external response is given to the
conflicting processor request.

External coherency conflicts may be avoided if the point of coherence is the
processor System interface bus and only one request is allowed to be outstanding
for any given secondary cache block. However, in some system designs external
coherency conflicts are unavoidable.

Processor block write and eliminate requests are never pending response, and
therefore cannot cause external coherency conflicts.

Table 6-29 describes the manner in which the external agent resolves external
coherency conflicts.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations

Table 6-29 External Coherency Conflict Resolution

Processor Requests that
are Pending Response

Conflicting External
Coherency Request

Resolution

Coherent block read

Intervention shared

Intervention exclusive

Invalidate

The external agent responds to the external
coherency requestor that the block is Invalid. At
some later time, the external agent supplies an
external response to the processor coherent
block read request that is pending response.t

Upgrade

Intervention shared

The external agent responds to the external
coherency requestor that the block is Shared. At
some later time, the external agent supplies an
external response to the processor upgrade
request that is pending response.”

Intervention exclusive

Invalidate

The external agent issues the conflicting external
coherency request to the processor. The
processor allows the conflicting external
coherency request to proceed and supplies a
Shared processor coherency state response. After
observing the processor coherency state
response, the external agent provides an external
ACK completion response for the conflicting
external coherency request. At some later time,
the external agent supplies an external response
for the processor upgrade request that is
pending response. This external response may
not be an external ACK completion response
unless it is associated with an external block data
response.

1 Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the

processor will return an invalid processor coherency state response.

* Although it is not required, the external agent may choose to issue the conflicting external coherency request to R10000 and the

processor will return a shared processor coherency state response.

Errata

Revised the two footnotes in Table 6-29 above.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

145

146

External Coherency Request Latency

This section describes the R10000 external coherency request latency.

depicts the following:
¢ an external coherency request which targets the processor
¢ the resulting processor coherency state response

¢ the potential processor coherency data response

Two external coherency request latency parameters are also defined:

Chapter 6.

Figure 6-26

* the processor coherency state response latency, tp;, specifies the time
from external coherency request to processor coherency state response

* the processor coherency data response latency, ty.q, specifies the time
from the external coherency request to the processor coherency data
response if a master, or to the assertion of the processor coherency data
response indication on SysState[0] if a slave.

Cycle
SysClIk

Master

SysReq*
SysGnt*

|

SysRel*

SysCmd(11:0)

SysCmdPar

SysAD(63:0)

SysADChk(7:0)

SysVal*
SysRdRdy*

SysWrRdy*

(=

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)

SysRespPar

T T I I " I Irrrn&’E" 17 YV vV Y Y-
NN TN TN

SysRespVal*

tpcdr

Figure 6-26 External Coherency Request Latency Parameters

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 147

The external coherency request latency is presented in Table 6-30.

Table 6-30 External Coherency Request Latency

Latency? (PClk cycles)
Processor Coherency State | Processor Cohgrency Data
Response (t;,s,) Response (t,q4,)
SCCIkDiv | Mint | Typtt | Max™ | Min'™" | TypH# | Max™
1 5 10 39 8 28 70
1.5 5 13 48 8 33 88
2 5 14 59 8 38 105
2.5 5 16 71 8 43 128
3 5 17 79 8 43 141

f This latency assumes no other previously issued external coherency requests are
outstanding. 1 to 3 additional PClk cycles may be required for synchronization with
SysClk depending on the SysClkDiv mode bits.

This value assumes a 32-word secondary cache block size.

t This value assumes the external coherency request hits a cached or outgoing buffer
entry.

1t This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache is not busy, and the external coherency request hits in
the MRU way of the secondary cache. If the external coherency request misses in the
most-recently used (MRU) way of the secondary cache, 1 to 3 additional PClk cycles are
required to query the LRU way of the secondary cache, depending on the SCClkDiv
mode bits.

** This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache just commenced an index-conflicting CACHE Hit
WriteBack Invalidate (S), and the external coherency request misses in the secondary
cache MRU way.

tt This value assumes the external coherency request hits an outgoing buffer entry.

111 This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache is not busy, the external coherency request hits in the
MRU way of the secondary cache, no subset primary data cache blocks are inconsistent,
and the external coherency request is secondary cache block-aligned. If the external
coherency request misses in the MRU way of the secondary cache, 1 to 3 additional PClk
cycles are required to query the LRU way of the secondary cache, depending on the
SCCIkDiv mode bits.

**#* This value assumes the external coherency request does not hit a cached or outgoing
buffer entry, the secondary cache just commenced an index-conflicting CACHE Hit
WriteBack Invalidate (S), the external coherency request hits in the LRU way of the
secondary cache, all subset primary data cache blocks are inconsistent, and the external
coherency request is not secondary cache block-aligned.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

148 Chapter 6.

SysGblPerf* Signal

The SysGblPerf* signal is provided for systems implementing a relaxed
consistency memory model. The external agent asserts this signal when all
processor requests are globally performed, thereby allowing the processor to
graduate SYNC instructions. The external agent negates this signal when some
processor requests are not yet globally performed, thereby preventing the
processor from graduating SYNC instructions.

To prevent a SYNC instruction from graduating, the external agent must negate
the SysGblPerf* signal no later than the same SysClk cycle in which it issued the
external completion response for a processor read or upgrade request which is not
yet globally performed. Also, the external agent must negate the SysGblPerf*
signal no later than two SysClk cycles after the address cycle of a processor
double/single/partial-word write request which has not yet been globally
performed.

The SysGblPerf* signal may be permanently asserted in systems implementing a
sequential consistency memory model.

6.19 Cluster Bus Operation

A R10000 multiprocessor cluster may be created by directly attaching the System
interfaces of 2 to 4 R10000 processors, and providing an external cluster
coordinator to handle arbitration and coherency management.

The cluster coordinator arbitrates the multiprocessors using the SysReq*,
SysGnt*, and SysRel* signals.

A processor request issued by an R10000 processor in master state is observed as
an external request by any R10000 processors in the slave state on the cluster bus.
This is described Table 6-31.

Table 6-31 Relationship Between Processor and External Requests for the Cluster Bus

Processor Request External Request
Coherent block read shared Intervention shared
Coherent block read exclusive Intervention exclusive
Noncoherent block read Allocate request number
Double/single/partial-word read Allocate request number
Block write NOP
Double/single/partial-word write NOP
Upgrade Invalidate
Eliminate NOP

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 149

In the same manner, a processor coherency data response issued by a processor in
the master state is observed as an external block data response by any processors
in the slave state.

External coherency requests that target a processor are handled in FIFO order and
result in processor coherency state responses. If an external coherency request
that targets a processor hits a DirtyExclusive secondary cache block, the processor
also provides a processor coherency data response.

Figure 6-27 presents an example of a processor read request with four R10000
processors residing on the cluster bus. The CohPrcReqTar mode bit is asserted
for a snoopy-based coherency protocol. R10000 issues a processor coherent read
exclusive request. This is observed as an external intervention exclusive request
by R100004, R10000,, and R100005. R10000; and R100005 respond with Invalid
processor coherency state responses. R10000, responds with a DirtyExclusive
processor coherency state response. Based on these processor coherency state
responses, the cluster coordinator allows R10000, to become master of the System
interface so that it may provide a processor coherency data response, which will
be observed as an external block data response by R10000,. Finally, the cluster
coordinator issues an external ACK completion response to forward the external
block data response and to free the request number.

Figure 6-28 presents an example of a processor upgrade request with four R10000
processors residing on the cluster bus. The CohPrcReqTar mode bit is asserted
for a snoopy-based coherency protocol. R10000 issues a processor upgrade
request, observed as an external invalidate request by R10000,, R10000,, and
R100003. R10000, and R100005 provide Shared processor coherency state
responses. R10000; provides an Invalid processor coherency state response. Based
on these processor coherency state responses, the cluster coordinator issues an
external ACK completion response for the processor upgrade request to indicate
that the request was successful and to free the request number.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

150 Chapter 6.

Cycle

SysClk
Master
SysReq0*
SysGnt0*
SysReql*
SysGntl*
SysReq2*
SysGnt2*
SysReq3*
SysGnt3*
SysRel*
SysCmd(11:0)
SysCmdPar
SysAD(63:0)
SysADChk(7:0)
SysVal*
SysRdRdy*
SysWrRdy*
SysResp(4:0)

SysRespPar

SysRespVal*
SysState0(2:0)
SysStatePar0
SysStateVal0*
SysStatel(2:0)
SysStateParl
SysStateVall*
SysState2(2:0)
SysStatePar2
SysStateVal2*
SysState3(2:0)
SysStatePar3
SysStateVal3*

Figure 6-27 R10000 Multiprocessor Cluster Processor Read Request Example

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

System Interface Operations 151

L
~]
L
~]

Cycle
SysClk
Master : te idl te i il
SysReqO* : e
SyantO* : : : >> : : : >> :

- I (R S (G
SysReql” L L W e e
SysGnt1* : : : : : ((: : : ((' ' ' ' ' ' ' :
SysReq2* ; : : : : : : : ' ' ' ' ' ' ' '
oz 1— ————
SysReq3* : : : : : : : : ' ' ' ' ' ' ' '
SysRel* — — \ — \ T
SysCmd(11:0) g e
SysCmdPar))

SysAD(63:0) /[/]

SysADChk(7:0) (\(\ (\(\

SysVal* : : ' H H : : :
SysRdRdy* : << : : : : : ;
SysWrRdy* : ; : : ' ' ' :
SysResp(4:0)

SysRespPar

SysRespVal* : ' i : : i i i
SysState0(2:0) 0

SysStatePar0

SysStateVal0*

SysStatel(2:0) 0 _:

SysStateParl

SysStateVal1* : : ' H H : : :
SysState2(2:0) 0

SysStatePar2

SysStateVal2* : : ' H H : : :
SysState3(2:0) 0

SysStatePar3 : : : : : : : X p : : : : : ; ; ;
Syssaevasr 1T AT

Figure 6-28 R10000 Multiprocessor Cluster Processor Upgrade Request Example

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

152

6.20 Support for I/O

Chapter 6.

The processor assumes a memory-mapped I/O model. Consequentially, no
special System interface encodings are provided, or required to designate I/O
accesses. It is left to the programmer to ensure that I/O addresses have the
appropriate TLB mappings.

The processor supports system designs utilizing hardware or software for
coherentI/O. The external coherency requests are useful for creating systems with
hardware I/O coherency, and the CACHE instruction is sufficient for creating a
system with software I/O coherency.

6.21 Support for External Duplicate Tags

Version 2.0 of January 29, 1997

Some system designs implement an external duplicate copy of the secondary cache
tags to reduce the coherency request latency and also filter out unnecessary
external coherency requests made to the R10000 processor.

For such systems, it must be remembered that blocks may reside in either the
secondary cache or in the outgoing buffer. During the address cycle of processor
block read requests, the secondary cache block former state is provided. The
external agent may use this information to maintain the external duplicate tags.

Typically, in a multiprocessor system using the cluster bus, the cluster coordinator
specifies a free request number for an external coherency request. However, in a
system using a duplicate-tag or directory-based coherency protocol, where the
CohPrcReqTar mode bit is negated, the cluster coordinator may specify a busy
request number for an external coherency request, providing each targeted R10000
processor has the request number busy due to an outstanding processor coherency
request from another processor.

For example, suppose the processor in master state issues a processor coherent
block read or upgrade request. The processors in slave state observe the processor
request as an external coherency request that targets the external agent only,
causing the associated request number to become busy. The cluster coordinator
checks the duplicate tag or directory structure to determine if the block resides in
the cache of one of the processors that was in slave state. If necessary, the cluster
coordinator issues an external coherency request targeted at one or more of the
processors that were in slave state. By using the same request number as the
original processor request, this external coherency request does not consume a free
request number, and allows a potential processor coherency data response to be
supplied as an external block data response to the original processor request.

MIPS R10000 Microprocessor User’s Manual

System Interface Operations 153

6.22 Support for a Directory-Based Coherency Protocol
Some system designs implement a directory-based coherency protocol.

For such systems, the processor provides the processor eliminate request cycle. If
the PrcEImReq mode bit is asserted, the processor issues a processor eliminate
request whenever it intends to eliminate a Shared, CleanExclusive, or DirtyExclusive
block from the secondary cache. During the address cycle of the processor
eliminate request, the physical address and the secondary cache block former
state are provided. The external agent may then use this information to maintain
an external directory structure.

6.23 Support for Uncached Attribute

The processor supports a 2-bit user-defined Uncached Attribute, which is driven on
SysADI[59:58] during the address cycle of the following:

® processor double/single/partial-word read requests

* double/single/partial-word write requests

* block write requests resulting from completely gathered uncached
accelerated blocks

For unmapped accesses, the uncached attribute is sourced from VA[58:57].

For mapped accesses, the uncached attribute is sourced from the TLB Uncached
Attribute field. The TLB Uncached Attribute field may be initialized in 64-bit mode
using bits 63:62 of the CP0 EntryLo0 and EntryLol registers.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

154

Chapter 6.

6.24 Support for Hardware Emulation

Cycle
SysClk

Master Po

When using the R10000 processor in hardware emulation, it is desirable to operate
the System interface at a relative low frequency (typically 1 MHz or below). Since
the R10000 processor contains dynamic circuitry, an external agent cannot simply
provide low frequency SysClk, so a SysCyc* input to the processor allows an
external agent to define a virtual system clock, and yet supply a SysClk within the
acceptable operating range. The assertion of SysCyc* in a particular SysClk cycle
creates a virtual system clock pulse four SysClk cycles later. SysCyc* may be
asserted aperiodically.

In a normal system environment, the SysCyc* input should be permanently
asserted.

Figure 6-29 depicts the use of SysCyc* to create a virtual SysClk of one-third the
normal SysClk frequency.

Po Py Py Pg ! Pg ' Pg ' Pg EA ' EA

SysReq*
SysGnt*

SysRel*

SysCmd(11:0)

RspLst

SysCmdPar

SysAD(63:0)

Dat Adr Dat

SysADChk(7:0)

SysRdRdy*

SysWrRdy*

SysState(2:0)

SysStatePar

SysStateVal*

SysResp(4:0)

SysRespPar

SysRespVal*

SERR N it)) IR = >~ > = > =< I i R

I
I
I
I
I
I
I
I
I
I
SysVal* |
I
I
I
I
I
I
I
I
SysCyc* [
I

Virtual SysClk

Version 2.0 of January 29, 1997

Figure 6-29 Hardware Emulation Protocol

MIPS R10000 Microprocessor User’s Manual

7. Clock Signals

The R10000 processor has differential PECL clock inputs, SysClk and SysClk*,
from which all processor internal clock signals and secondary cache clock signals
are derived.

Three major clock domains are in the processor:

* the System interface clock domain, which operates at the system clock
frequency and controls the System interface signals

* the internal processor clock domain, which controls the processor core
logic

¢ the secondary cache clock domain, which controls signals
communicating with the external secondary cache synchronous SRAM

These domains are described in this chapter.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997155

156

Chapter 7.

7.1 System Interface Clock and Internal Processor Clock Domains

Version 2.0 of January 29, 1997

In high performance systems, PECL-level differential clocks are routinely used to
minimize system clock skews. The R10000 processor receives differential system
clock signals at the SysClk and SysClk* pins; two additional pins, SysClkRet and
SysClkRet*, are the return paths for termination of these signals.

SysClk and SysClk* are used to drive an on-chip phase-locked loop (PLL), which
multiplies the system clock to create an internal processor clock, PClk.

The R10000 processor always communicates with the system at the SysClk
frequency, and PClk always runs at a frequency-multiple of SysClk, according to
the following formula:

PA k = Sysd k*(Sysd kDi v+1)/ 2

For example, in a 50 MHz system with SysClkDiv = 7 and SCClkDiv=2,
PClk= 50*8/2 = 200 MHz.

NOTE: Itis preferred that the R10000 processor uses a differential PECL clock
input. However, in a less-aggressive system, a CMOS/TTL single-ended clock
can be used to drive the processor, provided its complementary clock input,
SysClk?*, is tied to an appropriate reference voltage (1.4V for TTL, Vcc/2 for
CMOS). In any case, the reference voltage applied to SysClk* should not be
less than 1.2V.

MIPS R10000 Microprocessor User’s Manual

Clock Signals 157

7.2 Secondary Cache Clock

The processor uses registered synchronous SRAMs for its secondary cache, to
allow pipelined accesses.

FErrata

The processor provides 6 pairs of differential clock outputs, SCCIk(5:0) and
SCCIk*(5:0), to be used by the secondary cache synchronous SRAMs. These
outputs swing between VecQSC and Vss. The SCClkTap mode bits (Mode bits
are described in Chapter 8, the section titled “Mode Bits.”) specify the alignment
of SCCIk(5:0) and SCClk*(5:0) relative to the internal secondary cache clock.
Note that the output buffer delay is not included.

The secondary cache interface clock is generated by dividing down the internal
processor clock, PClk.

SCClk is related to SysClk according to the following formula:
SCA k = SysC k*(Sysd kDi v+1)/ (SCA kDi v+1)

For example, in a 50 MHz system with SysClkDiv=7 and SCCIkDiv=2,
SCCIk = 50%8/3 = 133 MHz.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

158 Chapter 7.

7.3 Phase-Locked-Loop

The processor uses the internal PLL for clock generation and multiplication as
shown in Figure 7-1.

Values of the termination resistors for the SysClkRet/SysClkRet* signals are
system-dependent. The system designer must select a value based upon the
characteristic impedance of the board, therefore it is beyond the scope of this
manual to specify values for these termination resistors.

R10000 PECL differential
SysClk input system clock
r— — — T -
Ik*
| r— — I_l_ SysC -
I ||
I ||
[| | L SysCIkRet
yS et
I L _ SysCIkRet*
| | Termination resistors
|
|1
Pl
I I
I I
L e | sccik(s:0) .
| clock |
| generators r SCCIk(5:0)* - SRAM
Replicated
| HSTL differential
output clocks
I

Figure 7-1 R10000 System and Secondary Cache Clock Interface

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

8. Initialization

This section describes initialization of the R10000 processor, including
initialization of logical registers.

Initialization of the processor occurs during a reset sequence. The processor
supports three separate reset sequences:

e Power-on reset
e (Cold reset

* Soft reset
These sequences are described in this chapter.

Also described are the mode bits.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997159

160 Chapter 8.

8.1 Initialization of Logical Registers

After a power-on or cold reset sequence, all logical registers (both in the integer
and the floating-point register files) must be written before they can be read.
Failure to write any of these registers before reading from them will have an
unpredictable result.

8.2 Power-On Reset Sequence

The Power-on Reset sequence is used to reset the processor after the initial power-
on, or whenever power or SysClk are interrupted.

The Power-on Reset sequence is as follows:
¢ The external agent negates DCOk.
¢ The external agent asserts SysReset*.
e The external agent negates SysGnt*.
* The external agent negates SysRespVal*.

e Once Vcc, VeeQISC,Sys], Vref[SC,Sys], Vcc[Pa,Pd], and SysClk
stabilize, the external agent waits at least 1ms and then asserts DCOk.

® At this time, the System interface resides in slave state and all internal
state is initialized.

* The SysClkDiv mode bits default to divide-by-1.
* The SCCIkDiv mode bits default to divide-by-3.

e After waiting at least 100 ms for the internal clocks to stabilize, the
external agent loads the mode bits into the processor by driving the
mode bits on SysAD[63:0], waiting at least two SysClk cycles, and
then asserting SysGnt* for at least one SysClk cycle.

¢ After waiting at least another 100 ms for the internal clocks to
restabilize, the external agent synchronizes all clocks internal to the
processor. This is performed by asserting SysRespVal* for one SysClk
cycle.

e After waiting at least 100 ms for the internal clocks to again restabilize,
(a third 100 ms restabilization period) the external agent negates
SysReset*.

® The external agent must retain mastership of the System interface,
refrain from issuing external requests or nonmaskable interrupts, and
ignore the system state bus until the processor asserts SysReq*. The
assertion of SysReq* indicates the processor is ready for operation. In
a cluster arrangement, all processors must assert SysReq*, indicating
they are ready for operation.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Initialization 161

Errata

If the virtual SysClk is used during the reset sequence, the mode bits, SysGnt*,
SysRespVal*, and SysReset* should all be referenced to the virtual SysClk that
is created with SysCyc?*. This approach will cause the R10000 to come out of reset

synchronously with the virtual SysClk, which will allow repeatable and lock-step

operation (see Chapter 6, the section titled “Support for Hardware Emulation,”
for description of virtual SysClk operation).

During a Power-on Reset sequence, all internal state is initialized. A Power-on
Reset sequence causes the processor to start with the Reset exception.

Figure 8-1 shows the Power-on Reset sequence.

Vce
VccQ[SC,Sys]
Vref[SC,Sys]
Vcc[Pa,Pd]
SysClk

DCOk

Master

SysReset*

SysReq*
SysGnt*
SysRel*
SysAD(63:0)
SysRespVal*

—r /

21lms }(>100ms }(>100ms){ }(>100ms){

Figure 8-1 Power-On Reset Sequence

v |
v

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

162

8.3 Cold Reset Sequence

Vce
VccQ[SC,Sys]
Vref[SC,Sys]
Vcc[Pa,Pd]
SysClk
DCOk

Master
SysReset*
SysReq*
SysGnt*
SysRel*
SysAD(63:0)
SysRespVal*

Version 2.0 of January 29, 1997

Chapter 8.

The Cold Reset sequence is used to reset the entire processor, and possibly alter the
mode bits while power and SysClk are stable.

The Cold Reset sequence is as follows:

The external agent negates SysGnt* and SysRespVal*.

After waiting at least one SysClk cycle, the external agent asserts
SysReset*.

After waiting at least 100 ms, the external agent loads the mode bits
into R10000. This is performed by driving the mode bits on
SysAD[63:0], waiting at least two SysClk cycles, and then asserting
SysGnt* for at least one SysClk cycle.

After waiting at least another 100 ms for the internal clocks to
restabilize, the external agent synchronizes all processor internal clocks
by asserting SysRespVal* for one SysClk cycle.

After waiting at least 100 ms for the internal clocks to again restabilize,
(a third 100 ms restabilization period) the external agent negates
SysReset*.

The external agent must retain mastership of the System interface,
refrain from issuing external requests or nonmaskable interrupts, and
ignore the system state bus until the processor asserts SysReq*. The
assertion of SysReq* indicates the processor is ready for operation. In
a cluster arrangement, all processors must assert SysReq*, indicating
they are ready for operation.

During a Cold Reset sequence all processor internal state is initialized. A Cold
Reset sequence causes the processor to start with a Reset exception.

Figure 8-2 shows the cold reset sequence.

I S L L T\
" "

)

il :\
§ RN

ey

) L N S VN

ek

{ .
P

Wi
210

oms ~>| |<~ 2100ms ~>|

Figure 8-2 Cold Reset Sequence

MIPS R10000 Microprocessor User’s Manual

Initialization 163

8.4 Soft Reset Sequence

A Soft Reset sequence is used to reset the external interface of the processor
without altering the mode bits while power and SysClk are stable.

The Soft Reset sequence is as follows:
¢ The external agent negates SysGnt* and SysRespVal*.

e After waiting at least one SysClk cycle, the external agent asserts
SysReset* for at least 16 SysClk cycles.

e The external agent must retain mastership of the System interface,
refrain from issuing external requests or nonmaskable interrupts, and
ignore system state bus until the processor asserts SysReq*. The
assertion of SysReq* indicates the processor is ready for operation. In
a cluster arrangement, all processors must assert SysReq*, indicating
they are ready for operation.

During a Soft Reset sequence, all external interface state is initialized. The internal
and secondary cache clocks are not affected by a Soft Reset sequence. The general
purpose, CP0, and CP1 registers are preserved, as well as the primary and
secondary caches.

A Soft Reset sequence causes a Soft Reset exception, in which the Soft Reset
exception handler executes instructions from uncached space and uses CACHE
instructions to analyze and dump the contents of the primary and secondary
caches. To resume normal operation, a Cold Reset sequence must be initiated.

Figure 8-3 presents the Soft Reset sequence.

P I P W W
]

I R L
G
O O O R O W O

Vcce
VccQ[SC,Sys]
Vref[SC,Sys]
Vcc[Pa,Pd]
SysClk

DCOk

ey
L

— T —~——
———_—

SysReset*

SysReq*

SysGnt*
SysRel*
SysAD(63:0)
SysRespVal*

|

|

|

|

|

| 1
Master |

|

|

|

|

|

|

= 16 SysClk
cycles

Figure 8-3 Soft Reset Sequence

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

164

Chapter 8.

8.5 Mode Bits

The R10000 processor uses mode bits to configure the operation of the
microprocessor. These mode bits are loaded into the processor from the
SysADI[63:0] bus during a power-on or cold reset sequence while SysGnt* is
asserted. The SysADChk|[7:0] bus does not have to contain correct ECC during
mode bit initialization. During the reset sequence, the mode bits obtained from
SysAD[24:0] are written into bits 24:0 of the CP0 Config register.

The mode bits are described in Table 8-1.

Table 8-1 Mode Bits

SysAD Bit Name and Function Value Mode Setting
0 Reserved
1 Reserved
Kseg0CA 2 Unc}ilcheld -
2:0 Specifies the kseg0 cache 3 Cacheable noncoherent
' aloorithm 4 Cacheable coherent exclusive
& ’ 5 Cacheable coherent exclusive on write
6 Reserved
7 Uncached accelerated
DevNum
4:3 Specifies the processor device 0-3
number.
Cohl.’lcheqTar 0 External agent only
Specifies the target of processor
5 . 1 Broadcast
coherent requests issued on the
System interface by the processor.
PrcEImReq
Specifies Whether to enable 0 Disable
6 processor eliminate requests onto 1 Enable
the System interface by the
processor.
PrcRg gMax . 0 1 outstanding processor request
Specifies the maximum number .
. 1 2 outstanding processor requests
8:7 of outstanding processor requests .
. 2 3 outstanding processor requests
allowed on the System interface .
b 3 4 outstanding processor requests
y the processor.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Initialization

Table 8-1 (cont.) Mode Bits
SysAD Bit Name and Function Value Mode Setting
0 Reserved
1 Result of division by 1
2 Result of division by 1.5
3 Result of division by 2
SysCIkDiv 4 Result of d%V}S}on by 2.5
. 5 Result of division by 3
Sets PClk to SysClk ratio; L
. : 6 Result of division by 3.5
determines the System interface L
7 Result of division by 4
12:9 clock frequency; see Chapter 7,
S u 8 Reserved
the section titled “System
9 Reserved
Interface Clock and Internal
. A Reserved
Processor Clock Domains
B Reserved
C Reserved
D Reserved
E Reserved
F Reserved
SCB!k.Slze 0 16-word
13 Specifies the secondary cache
. 1 32-word
block size.
SCCorEn
14 Specifies the method of correcting 0 Retry access through corrector
secondary cache data array ECC 1 Always access through corrector
errors.
Men?‘”;“d 0 Little endian
15 Specifies the memory system . .
. 1 Big endian
endianness.
0 512 Kbyte
1 1 Mbyte
SCSize > ﬁgi
18:16 S;)Ce}(l:;ﬁes the size of the secondary 4 8 Mbyte
' 5 16 Mbyte
6 Reserved
7 Reserved
SCCIkDiv (1) Eeserlrecfl division by 1
Sets PClk to SCClk ratio; esun Or Ivision by
. 2 Result of division by 1.5
determines the secondary cache L
3 Result of division by 2
21:19 clock frequency; see Chapter 7, L
C P 4 Result of division by 2.5
the section titled “System L
5 Result of division by 3
Interface Clock and Internal
: 6 Reserved
Processor Clock Domains
7 Reserved
24:22 Reserved 0

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

165

166 Chapter 8.

Table 8-1 (cont.) Mode Bits

SysAD Bit Name and Function Value Mode Setting
0 SCClk same phase as internal clock
1 SCClk 1/12 PCIk period earlier than internal clock
2 SCClk 2/12 PCIk period earlier than internal clock
3 SCClk 3/12 PCIk period earlier than internal clock
4 SCClk 4/12 PCIk period earlier than internal clock
SCCIKTap 5 SCCll.(5/12 PClk period earlier than internal clock
o . + 6 undefined
Specifies the alignment* of - undefined
28:25 fe?iilxl:elstg]t}?:?n?:;gal%:%aar 8 SCClIk 6/12 PCIk period earlier than internal clock
cache clock Y 9 SCClk 7/12 PCIk period earlier than internal clock
EE— A SCClk 8/12 PClk period earlier than internal clock
B SCClk 9/12 PCIk period earlier than internal clock
C SCClk 10/12 PClk period earlier than internal clock
D SCClIk 11/12 PClk period earlier than internal clock
E undefined
F undefined
29 Reserved 0
ODrainSys
Spec.lfles whether or not to 0 Push-pull
30 configure select System interface 1 Open drain
bidirectional and output signals pe
as open drain.
CT™M .
31 Specifies whether or not to enable 0 Disable
1 Enable
cache test mode.
63:32 Reserved 0

f Does not include the output buffer delay.

* SysReq*, SysRel*, SysCmd[11:0], SysCmdPar, SysAD[63:0], SysADChk[7:0], SysVal*, SysState[2:0], SysStatePar, SysStateVal*,
SysCorErr*, SysUncErr*

‘Errata

The description of bits 28:25 of Table 8-1 has been revised.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

9. Error Protection and Handling

This chapter presents the error protection and handling features provided by the
R10000 processor.

Two types of errors can occur in an R10000 system:
¢ correctable

e uncorrectable

The following two sections describe them.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997167

168 Chapter 9.

9.1 Correctable Errors

Correctable errors consist of:
* secondary cache tag array correctable ECC errors
* secondary cache data array correctable ECC errors

* System interface address/data bus correctable ECC errors

When the processor detects a correctable error, the error is automatically corrected,
and normal operation continues. Secondary cache array scrubbing is not
performed.

The processor informs the external agent that a correctable error was detected and
then corrected by asserting the SysCorErr* signal for one SysClk cycle.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling

9.2 Uncorrectable Errors

169

Uncorrectable errors consist of:

‘Errata

Primary instruction cache array parity errors

Primary data cache array parity errors

Secondary cache tag array uncorrectable ECC errors
Secondary cache data array uncorrectable ECC errors
System interface command bus parity errors

System interface address/data bus uncorrectable ECC errors

System interface response bus parity errors

When the processor detects an uncorrectable error, a Cache Error exception is
posted. In general, the detection of an uncorrectable error does not disrupt any
ongoing operations. However, the instruction fetch and load/store units never
use data which contains an uncorrectable error.

To inform the external agent, the processor asserts SysUncErr* for one SysClk

cycle whenever any of the following uncorrectable errors are detected:

Primary instruction cache tag array parity errors

Primary data cache tag array parity errors

Secondary cache tag array uncorrectable ECC errors

System interface command bus parity errors

System interface address/data bus external address cycle uncorrectable
ECC errors

Svstem interface response bus parity errors.

The processor informs the external agent that an uncorrectable tag error has been
detected by asserting SysUncErr* for one SysClk cycle.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

170

Chapter 9.

9.3 Propagation of Uncorrectable Errors

Version 2.0 of January 29, 1997

The processor assists the external agent in limiting the propagation of
uncorrectable errors in the following manner:

During external block data response cycles, if the data quality
indication on SysCmd(5) is asserted, or if an uncorrectable ECC error
is encountered on the system address/data bus while the ECC check
indication on SysCmd(0) is asserted, the processor intentionally
corrupts the ECC of the corresponding secondary cache quadword
after receiving an external ACK completion response.

During processor data cycles, the processor asserts the data quality
indication on SysCmd(5) if the data is known to contain uncorrectable
errors. The System interface ECC is never intentionally corrupted; the
SysCmd(5) bit is used to indicate corrupted data.

If an uncorrectable cache tag error is detected, the processor asserts
SysUncErr* for one SysClk cycle.

An external coherency request that detects a secondary cache tag array
uncorrectable error asserts the secondary cache block tag quality
indication on SysState(2) during the corresponding processor
coherency state response.

If an external coherency request requires a processor coherency data
response, and a primary data cache tag parity error is encountered
during the primary cache interrogation, or a secondary cache tag array
uncorrectable error is encountered during the secondary cache
interrogation, the processor asserts the data quality indication on
SysCmd(5) for all doublewords of the corresponding processor
coherency data response.

MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling 171

9.4 Cache Error Exception

The processor indicates an uncorrectable error has occurred by asserting a Cache
Error exception.

The following four internal units detect and report uncorrectable errors:
* instruction cache
¢ data cache
* secondary cache

* System interface
Each of these four units maintains a unique local CacheErr register.

A Cache Error exception is imprecise; that is, it is not associated with a particular
instruction. When any of the four units post a Cache Error exception, completed
instructions are graduated before the Cache Error exception is taken. If there are
Cache Error exceptions posted from more than one of the units, the exceptions are
prioritized in the following order:

1. instruction cache
2. data cache

3. secondary cache
4. System interface.

The corresponding local CacheErr register is transferred to the CPO CacheErr
register and the CP0 Status register ERL bit is asserted. Instruction fetching begins
from 0xa0000100 or Oxbfc00300, depending on the CP0 Status register BEV bit. The
CPO ErrorEPC register is loaded with the virtual address of the next instruction
that has not been graduated, so that execution can resume after the Cache Error
exception handler completes.

When ERL=1, the user address region becomes a 2-Gbyte uncached space mapped
directly to the physical addresses. This allows the Cache Error handler to save
registers directly to memory without having to use a register to construct the
address.

The processor does not support nested Cache Error exception handling. While the
CPO Status register ERL bit is asserted, any subsequent Cache Error exceptions are
ignored. However, the detection of additional uncorrectable errors is not
inhibited, and additional Cache Error exceptions may be posted.’

t The hardware does not handle the case of multiple Cache Error exceptions in any
special manner; caches are refilled as normal, and data forwarded to the appropriate
functional units.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

172

Chapter 9.

9.5 CPO CacheErr Register EW Bit

When a unit detects an uncorrectable error, it records information about the error
in its local CacheErr register and posts a Cache Error exception. If a subsequent
uncorrectable error occurs while waiting for the Cache Error exception to be taken
and transfer of the local CacheErr register to the CP0 CacheErr register to complete,
the EW bit is set in its local CacheErr register. Once the Cache Error exception is
taken, the EW bit in the CPO CacheErr register is set and the Cache Error exception
handler now determines that a second error has occurred.

Once the CPO CacheErr register EW bit is set, it can only be cleared by a reset
sequence.

9.6 CPO Status Register DE Bit

Asserting the CPO Status register DE bit suppresses the posting of future Cache
Error exceptions. All local CacheErr registers are also prevented from being
updated. Unlike the R4400 processor architecture, when the DE bit is asserted,
cache hits are not inhibited when an uncorrectable error is detected. Correctable
errors are handled normally when the DE bit is set.

NOTE: Be careful when setting this bit, since it may cause erroneous data
and/or instructions to be propagated.

9.7 CACHE Instruction

Version 2.0 of January 29, 1997

Uncorrectable error protection is suppressed for the Index Load Tag, Index Store
Tag, Index Load Data, and Index Store Data CACHE instruction variations. These
four variations may be used within a Cache Error exception handler to examine the
cache tags and data without the occurrence of further uncorrectable errors.

MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling 173

9.8 Error Protection Schemes Used by R10000

Error protection schemes used in the R10000 processor are:
* parity
¢ sparse encoding

e ECC

These schemes are described in this section, and listed in Table 9-1.

Table 9-1 Error Protection Schemes Used in the R10000 Processor

Error Detection Used What is Protected
Primary caches
Parity Secondary cache data

System interface buses

Sparse encoding Primary data cache state mod array

Secondary cache tag
ECC (SECDED) Secondary cache data
System interface address/data bus

Parity
Parity is used to protect the primary caches and various System interface buses.
The processor uses both odd and even parity schemes:

* in an odd parity scheme, the total number of ones on the protected
data and the corresponding parity bit should be odd

* in an even parity scheme, the total number of ones on the protected
data and the corresponding parity bit should be even.

Sparse Encoding

A sparse encoding is used to protect the primary data cache state mod array. In
such a scheme, valid encodings are chosen so that altering a single bit creates an
invalid encoding.

ECC

An error correcting code (ECC) is used to protect the secondary cache tag, the
secondary cache data, and the System interface address/data bus. A distinct
single-bit error correction and double-bit error detection (SECDED) code is used
for each of these three applications.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

174

Chapter 9.

9.9 Primary Instruction Cache Error Protection and Handling

Error Protection

Error Handling

Version 2.0 of January 29, 1997

This section describes error protection and error handling schemes for the primary
instruction cache.

The primary instruction cache arrays have the following error protection schemes,
as listed in Table 9-2.

Table 9-2 Primary Instruction Cache Array Error Protection

Array Width Error Protection
Tag Address | 27-bit Even parity
Tag State 1-bit Even parity
Data 36-bit Even parity
LRU 1-bit None

All primary instruction cache errors are uncorrectable. If an error is detected, the
instruction cache unit posts a Cache Error exception and initializes the D, TA, TS,
and PIdx fields in the local CacheErr register (see Chapter 14, CacheErr Register (27),
for more information). If an error is detected on the tag address or state array, the
processor informs the external agent that an uncorrectable tag error was detected
by asserting SysUncErr* for one SysClk cycle.

MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling 175

9.10 Primary Data Cache Error Protection and Handling
This section describes error protection and error handling schemes for the

primary data cache.

Error Protection

The primary data cache arrays have the following error protection schemes, as
listed in Table 9-3.

Table 9-3 Primary Data Cache Array Error Protection

Array Width Error Protection
Tag Address | 28-bit Even parity
Tag State 3-bit Even parity
Tag Mod 3-bit Sparse encoding
Data 8-bit Even parity
LRU 1-bit None

Error Handling

All primary data cache errors are uncorrectable. If an error is detected, the data
cache unit posts a Cache Error exception and initializes the EE, D, TA, TS, TM, and
Pldx fields in the local CacheErr register (see Chapter 14, CacheErr Register (27), for
more information). If an error is detected on the tag address, state, or mod array,
the processor informs the external agent that an uncorrectable tag error was
detected by asserting SysUncErr* for one SysClk cycle.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

176

Chapter 9.

9.11 Secondary Cache Error Protection and Handling

Error Protection

Error Handling

Data Array

‘Errata

Version 2.0 of January 29, 1997

This section describes error protection and error handling schemes for the
secondary cache.

The secondary cache arrays have the following error protection schemes, as listed
in Table 9-4.

Table 9-4 Secondary Cache Array Error Protection

Array Width Error Protection
Data 128-bit 9-bit ECC + even parity
Tag 26-bit 7-bit ECC
MRU (Way prediction table) | 1-bit None

This section describes error handling for the data array and the tag array. As
shown in Table 9-4, errors are not detected for the way prediction table.

The 128-bit wide secondary cache data array is protected by a 9-bit wide ECC. An
even parity bit for the 128 bits of data is used for rapid detection of correctable
(single-bit) errors; when a correctable parity error is detected, the data is sent
through the data corrector. The parity bit does not have any logical effect on the
processor’s ability to either detect or correct errors.

Whenever the processor writes the secondary cache data array, it drives the proper
ECC on SCDataChk(8:0) and even parity on SCDataChk(9).

MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling 177

Data Array in Correction Mode

The secondary cache operates in correction mode when the SCCorEn mode bit is
asserted. Whenever the processor reads the secondary cache data array in
correction mode, the data is sent through a data corrector.

If a correctable error is detected, in-line correction is automatically made without
affecting latency. The processor informs the external agent that a correctable error
was detected and corrected by asserting SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error
exception and initializes the D and Sldx fields in the local CacheErr register (see
Chapter 14, CacheErr Register (27), for more information).

In correction mode, secondary-to-primary cache refill latency is increased by two
PClk cycles. Multiple processors, operating in a lock-step fashion, remain
synchronized in the presence of secondary cache data array correctable errors.

Table 9-5 presents the ECC matrix for the secondary cache data array.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

661 ‘6 frarmun fo o'z uoisiap

[UNUDIA] S, 43S 40852204d011N 0000TY SITN

Check Bit 8|7654/3210
Data Bit T 1111 (11 111 [1111 1111 | 1111
2222(2222(1111 {1111 {1100{0000{0000{9999(9999(9988 (8888 (8888|7777 7777|7766 |6666 |6666 [5555 [5555 [5544 [4444 (4444 (3333(3333(3322(2222(2222(1111 [1111 11
7654(3210(9876(5432(1098(7654(3210(9876(5432(1098 (7654 (3210(9876 [5432(1098 (7654 [3210(9876 [5432(1098 7654 [3210(9876 {5432 (1098 7654 [3210{9876|5432(1098 7654 [3210
5411]0000/0000{ 1111|11110000{0011| 111111111110 |0011]|0000{0110| 1111 1111|0000|0111]0010/0001]01100010{11010000{1011 0000|1101 0000|0000|0000|00100000|0010|0000|1000|0000
53/0/1000/0000| 1111|1111 1111|1111]|0000|0011]0000| 1111|1111 1111]0000|0111]0000{0011]1011]0010/0001]0000|0000{1000|0100{1000{1100{1000]0000/{0010{1001]0000{1001]0000|00100000
5410/0100/0000{1000{0011|1111|1111|1111|1111]|0000|{0011]0000{01010000/0011|1111|1111]|0101]11001000/0000{1000|0100|0000|0100{11000100]00111000|0100{1000/|0100{1000|0101]0000
Number of ones [53/0/0010{0000{0100{0010{1000{0000{1000{0000{0001|0010{ 1111|1100 111110111111 |1100{0011 1111|1111 |1101|0110|0010{0000{0010{0010{0010{1000{0101{0000(0100{1100{0100{0000|1000
per row 53]0/0001]0000/0010/0001]0100/0000|01000011 | 1111|1111|1000/0000{1000/0000{1000{0100| 1111|1111 1111]1111]|0010|0001]|0000|0001]0000{0001|1111|111111000010/0000{0010{1000/0100
53]0/0000/1000]0001]00000010|0011]00100000{1000{0001|0100/0100{0100/0000|0100{0110|1011|1111|1111]|1100|0011| 1111|1101 11110011 1111]0100|1100|0000]0001]0000|0001]0100/0010
5410/0000/0100/0000{1010/0001]0010]0001]00100001{1000{0010|00110010/0000/0010|0001]0000/0000{1011|1010|1111|1111]1100/0000|1010/0000{11010000| 1111|1111|1111| 111111000001
53/0/0000/0010]0000{0100/0000{1001]0000{1001]0100|0100/0001]00110001]0010|0001]0000/{0000{1000{0100{1101|1100{0000|1110{0000| 111111111110 |0000|1100|0000| 1111|1111 1111|1111
5410]0000]0001]0000{0001]0000{0100/0000/0100{0010{00000000{10110000{1101]0000{1011]0100|0111 |0000/0100{1110{0000| 1111|11110110/0000{11000011|1111|1111|1100|0000| 1111|1111
Number of ones [1[111111113333|3355|3333 335533333355 3333|3355 3333|3555 3333|3355 333335553355 5555|5555 5533|5553 | 3333|5533 | 3333|5553 3333|5533 | 3333|5533 3333|5533 333355333333
per column

G-6 919V L

Avaryy v3v ayovD) Aivpuodas 40f X1 DDF

8/1

6 4a3dvyD

Error Protection and Handling 179

Data Array in Noncorrection Mode

When the SCCorEn mode bit is negated, the secondary cache operates in
noncorrection mode. Whenever the processor reads the secondary cache data
array in noncorrection mode, it checks for even parity on SCDataChk(9). If a
parity error is detected, it is assumed that a correctable error has occurred, and the
secondary cache block is again read through a data corrector. During this re-read,
the processor checks the SCDataChk(8:0) bus for the proper ECC.

If a correctable error is detected, correction is automatically performed in-line. To
inform the external agent that a correctable error had been detected and corrected,
the processor asserts SysCorErr* for one SysClk cycle.

If an uncorrectable error is detected, the secondary cache unit posts a Cache Error
exception and initializes the D and Sldx fields in the local CacheErr register.

Secondary cache data array correctable errors are monitored with Performance
Counter 0.

Tag Array

The 26-bit-wide secondary cache tag array is protected by a 7-bit-wide ECC.
Table 9-6 presents the ECC matrix for the secondary cache tag array.

Table 9-6 ECC Matrix for Secondary Cache Tag Array

Check Bit o 12 34 54
Data Bit op22 P2 11 [11 1111t
su32 o b8 [76 543201098 [7654[3210
11[0{0100{1000]1000{0001| 1111 [10001000 1000
13{0{1000{0100[0100]0010| 1111 | 1111 [0000|0100
11[1]0010{1000]0001|1000/0000| 1111 [0100[0010
Number of ones (141414400 0100[0010]0100[1000{0100[1111 |0000
per row 13|0[1000{0001|1000[1000]0100[0000] 1111 | 1111
12|t|0010/0010{0100[0100[0010{0010[0010[1111
14{0| 1111 {1100{ 1100| 1100|0001 |0001 0001|0001
Number of ones per [3|3331]3311{3311(3311|3333(3333(3333(3333
column

Whenever the processor reads the secondary cache tag array, it checks the
SCTagChk(6:0) bus for the proper ECC. If a correctable error is detected,
correction is automatically performed in-line, without affecting latency. The
processor asserts SysCorErr* for one SysClk cycle to inform the external agent
that a correctable error has been detected and corrected. If an uncorrectable error
is detected, the secondary cache unit posts a Cache Error exception and initializes
the TA and Sldx fields in the local CacheErr register. The processor asserts
SysUncErr* for one SysClk cycle to inform the external agent that an
uncorrectable tag error has been detected.

Whenever the processor writes the secondary cache tag array, it drives the proper
ECC on the SCTagChk(6:0) bus.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

180

9.12 System Interface Error Protection and Handling

Error Protection

Version 2.0 of January 29, 1997

This section describes error protection and error handling schemes for the System

interface.

The System interface buses have the following error protection schemes, as listed
in Table 9-7.

Table 9-7 System Interface Bus Error Protection

Bus Width Error Protection
SysCmd 12-bit Odd parity
SysAD 64-bit 8-bit ECC
SysState 3-bit Odd parity
SysResp 5-bit Odd parity

MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling 181

Error Handling

This section describes error handling on the system command bus, system
address/data bus, system state bus, and system response bus.

SysCmd(11:0) Bus
The 12-bit wide system command bus, SysCmd(11:0), is protected by odd parity.

Whenever the processor is in master state and it asserts SysVal* to indicate that it
is driving valid information on the SysCmd(11:0) bus, it also drives odd parity on
the SysCmdPar signal.

Errata

Whenever the processor is in slave state and an external agent asserts SysVal* to
indicate that it is driving valid information on the SysCmd(11:0) bus, the
processor checks the SysCmdPar signal for odd parity. If a parity error is
detected, the processor ignores the SysCmd(11:0) and SysAD(63:0) buses for one
SysClk cycle. The System interface unit posts a Cache Error exception and sets the
SC bit in the local CacheErr register. Additionally, the processor informs the
external agent by asserting SysUncErr* for one SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, the
processor to become unsynchronized with other processors or the external
agent on the cluster bus.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

182

SysAD(63:0) Bus

Chapter 9.

The 64-bit wide system address/data bus, SysAD(63:0), is protected by an 8-bit-
wide ECC.

Processor in Master State

Whenever the processor is in master state and it asserts SysVal* to indicate it is
driving valid information on the SysAD(63:0) bus, it also drives the proper ECC
on the SysADChk(7:0) bus.

Processor in Slave State

Whenever the processor is in slave state, error checking is enabled with the
assertion of SysCmd(0), and an external agent asserts SysVal* to indicate it is
driving valid information on the SysAD(63:0) bus, the processor checks the
SysADChk(7:0) bus for the proper ECC.

Correctable Error Detected

If a correctable error is detected during an external address cycle, or during an
external data cycle for a processor read or upgrade request originated by the
R10000 processor, correction is automatically performed in-line without affecting
latency. The processor asserts SysCorErr* for one SysClk cycle to inform the
external agent that a correctable error has been detected and corrected.

Uncorrectable Error Detected

‘FErrata

Version 2.0 of January 29, 1997

If an uncorrectable error is detected during an external address cycle, the processor
ignores the SysCmd(11:0) and SysAD(63:0) buses for one SysClk cycle, and the
System interface unit posts a Cache Error exception and sets the SA bit in the local
CacheErr register. Additionally, the processor informs the external agent by
asserting SysUncErr* for one SysClk cycle.

Caution: By ignoring the SysCmd(11:0) and SysAD(63:0) buses, this
processor may become unsynchronized with other processors or the
external agent on the cluster bus.

If an uncorrectable error is detected or the data quality indication on SysCmd(5) is
asserted during an external data cycle for a processor read or upgrade request
originated by the processor, the R10000 asserts the corresponding incoming buffer
uncorrectable error flag.

When the processor forwards block data from an incoming buffer entry after
receiving an external ACK completion response, the associated incoming buffer
uncorrectable error flags are checked, and if any are asserted, the System interface
unit posts a single Cache Error exception and initializes the EE, D, and SIdx fields
in the local CacheErr register.

MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling

When the processor forwards double/single/partial-word data from an incoming
buffer entry after receiving an external ACK completion response, the associated
incoming buffer uncorrectable error flag is checked and, if asserted, the System

interface unit posts a Bus Error exception.

Table 9-8 presents the ECC matrix for the System interface address/data bus.

This ECC matrix is identical to that used by the R4X00 System interface.

Table 9-8 ECC Matrix for System Interface Address/Data Bus

column

Check Bit 43 52 70 61
Data Bit 666655 |555555 |5544|4444|4444|3333|3333|3302(2202(2202| 1111 | 1111 [t1
321008 |7654B2 |1098|7654|3210|0876|5432| 1098|7654|3210|0876 (543210 |0876K4 [3210
b7 1111 [1100] 1100]1000{1000{0000| 1111] 1111 |0000| 1000 1000] 1000{ 1000{0000] 1010]0100{ 1000|1000
b7 | 1111 [1000|1000]1000|0100{0000|0000] 0000 1111 [0100|0100]0100|0100{ 1111 | 1100| 1100{1010[0100
b7 |0000[1000|1100]1010|0010[1111 | 1111 |0000|0000[0010|0010]0010|0010{ 1111 | 1000| 1000| 1100|0010
Number of ones 7 |0000|1010{0100{1100{0001| 1111 {0000 1111 1111|0001 {0001 |0001]0001|0000{ 1000 1100] 1000|0001
per row 07 1000{010100110100{0000{ 1000{ 1000{1000[1000| 1111{ 1111 |0000] 1111 | 1000] 1100|0001 |0100{0000
b7 0100]1100{0010[0101| 1111 [0100{0100{0100[0100|0000]0000] 1111] 1111 |01000100|0011 [0100{0000
b7 |0010[0100[0011|1100| 1111 [0010|0010]0010|0010{ 1111 |[0000]0000|0000[0010[0100]0010|0101 | 1111
07 |0001]0100/0001|0100{0000{0001[0001{0001|0001|0000| 1111] 1111 |0000|0001 0101|0011 1100 1111
Number of ones per |3333|5511(3333|55113333(3333(3333|3333(3333|3333(3333(3333|3333|3333(5511|3333/ 55113333

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

184

SysState(2:0) Bus

SysResp(4:0) Bus

FErrata

Version 2.0 of January 29, 1997

Chapter 9.

The 3-bit wide system state bus, SysState(2:0), is protected by odd parity. The
processor drives odd parity on the SysStatePar signal.

The 5-bit wide system response bus, SysResp(4:0), is protected by odd parity.

Whenever an external agent asserts SysRespVal* to indicate it is driving valid
information on the SysResp(4:0) bus, the processor checks the SysRespPar signal
for odd parity. If a parity error is detected, the processor ignores the SysResp(4:0)
bus for one SysClk cycle. The System interface unit posts a Cache Error exception
and sets the SR bit in the local CacheErr register. Additionally, the processor
informs the external agent by asserting SysUncErr* for one SysClk cycle.

Caution: If the processor ignores the SysResp(4:0) bus, it may become
unsynchronized with other processors or the external agent on the cluster
bus. Also, the processor will “hang” if a parity error is detected on the
SysResp[4:0] bus during an external completion response cycle for a
processor double/single/partial-word read request originated by the
processor. The external agent may initiate a Soft Reset sequence to obtain the
contents of the CacheErr register, and the CacheErr register will indicate a
System interface uncorrectable system response bus error.

MIPS R10000 Microprocessor User’s Manual

Error Protection and Handling

Protocol Observation

The processor continuously observes the protocol on the System interface.
Table 9-9 presents the supported protocol observations and the associated error

handling sequence.

Table 9-9 Protocol Observation

185

Protocol Observation

Error Handling

External response data cycle with an unexpected request
number during an external block data response for a
processor block read or upgrade request originated by the
processor.

Ignore the external response data cycle

External block data response specifying a Reserved cache
block state for a processor block read or upgrade request
originated by the processor.

Override the cache block state to CleanExclusive

External block data response specifying a Shared cache
block state for a processor coherent block read exclusive or
upgrade request originated by the processor.

Override the cache block state to CleanExclusive

External completion response specifying a Reserved
completion indication.

Ignore the external completion response

External ACK completion response for a processor read
request originated by the processor that has not received an
external data response.

Override the external ACK completion response
toa NACK

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

186 Chapter 9.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

10. CACHE Instructions

This chapter describes the CacheOps (CACHE) used in the R10000 processor.
The format of the CACHE instruction is:
CACHE op, offset(base)

In a CACHE instruction, the 16-bit offset is sign-extended and added to the
contents of the general register base to form a Virtual Address (VA). The VA is
translated to a Physical Address (PA) using the TLB. The 5-bit sub-opcode
specifies a cache instruction variation for that address.

1t CacheOp and CACHE instruction are used interchangeably in this text.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997187

188

Chapter 10.

10.1 Notes on CACHE Instruction Operations

Virtual Address

Physical Address

CPO0 Not Usable

Version 2.0 of January 29, 1997

This section describes the operations of the CACHE instructions in the R10000
processor.

NOTE: The operation of any operation/cache combination not listed below is
undefined, and the operation of this instruction on uncached addresses is also
undefined.

The CACHE instruction uses the following portions of the VA to specify a primary
cache block and way:

* VA[13:5] defines a 32-byte block in the primary data cache array.

* VAJ13:6] defines a 64-byte block in the primary instruction cache array.

¢ In both cases, VAI0] defines the way needed by Index operations.
Since VA[0] is used to indicate the way, it does not cause alignment errors.

When accessing data in the primary caches, VA[Blocksize-1] is also used to read
or write a specific word.

The CACHE instruction uses the following portions of the PA to specify a
secondary cache block and way:

¢ PA[Size of secondary cache - 2:Blocksize of secondary cache] is used
to access the secondary cache.

e PA[0] is used to specify the way needed by Index operations.

Since PA[0] is used to indicate the way during CACHE Index operations,
alignment errors are suppressed.

When accessing data in the secondary cache, PA[Blocksize-1:3] is also used to read
or write a specific doubleword.

If the CPO0 is not usable (if not in Kernel mode, CU0 must be set in the Status register
for CPO to be usable), a Coprocessor Unusable exception is taken.

MIPS R10000 Microprocessor User’s Manual

CACHE Instructions 189

TLB Refill and TLB Invalid Exceptions on CacheOps

TLB Refill and TLB Invalid exceptions can occur on any operation. For Index
operations, where the address (virtual address for the primary caches, physical
address for the secondary cache) is used to index the cache but need not match the
cache tag, unmapped addresses may be used to avoid TLB exceptions. The
operation never causes TLB Modified exceptions.

Hit Operation Accesses

A Hit operation accesses the specified cache as a normal data reference, and
performs the specified operation if the cache block contains valid data at the
specified physical address (a hit).

The operation is undefined if a CacheOp hit occurs in both ways of the cache.

Watch Exception

There is no Watch exception for CacheOps.

Address Error Exception

During an Index CacheOp, bit 0 is not checked for an Address Error exception
since this bit is used as the Way indicator bit, and may be non-zero. Bit 1 of an
Index CacheOp can still generate an Address Error exception if it is not set to zero.

For all remaining CacheOps, the low-order two bits of the instruction must be set
to zero, or else they will generate an Address Error exception.

A CacheOp is never checked for alignment Address Error exceptions, only for
privilege-type Address Error exceptions.

Write Back

Write back from the primary data cache goes to the secondary cache. Write back
from a secondary cache always goes to the System interface unit.

A secondary write back always writes the most recent data; the primary data
cache must be interrogated, and any dirty inconsistent data written back to the
secondary cache before the secondary block is written back to the system interface
unit. The address to be written is specified by the cache tag and not the translated
PA.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

190

Invalidation

CE Bit

CH Bit

Chapter 10.

When a block is invalidated in the secondary cache, all subset blocks in the primary
cache are also invalidated. The StateMod bits on invalidated block in the primary
data cache are set to “001” (Normal) during any invalidation.

The R10000 processor does not support the CE bit. The functionality of the CE bit
has been replaced by the Index Load Data and Index Store Data instructions.

The CH bit is supported in the R10000 processor. It is modified by a Hit Invalidate
(S) or Hit WriteBack Invalidate (S) CACHE instruction. CH is set if there is a hit in
the secondary cache, and cleared if there is a miss. The CH bit can also be modified
by a MTCO instruction.

Serial Operation of CACHE Instructions

All CACHE instruction variations are performed serially. From the aspect of the
primary cache, this means CACHE instructions can impede the instruction stream.
For this reason, load /store speculation is not allowed beyond a CACHE
instruction until the CACHE instruction has graduated. All load/store accesses,
including writebacks to the external agent, must be complete before the CACHE
instruction can graduate, and any load/store following a CACHE instruction
cannot be issued speculatively until the CACHE instruction graduates. Uncached
operations and instruction fetches are not affected.

Instructions Not Supported

Version 2.0 of January 29, 1997

The processor does not support the following CACHE instructions:
e Create DirtyExclusive
e Hit WriteBack
e il (I)

e Hit Set Virtual variations

MIPS R10000 Microprocessor User’s Manual

CACHE Instructions

Op Field Encoding

191

Table 10-1 presents the Op field encoding for the CACHE instruction. Encodings
not listed in this table are undefined.

Table 10-1 CACHE Instruction Op Field Encoding

Op Field | CACHE Instruction Variation | Target Cache
00000 Index Invalidate (I
00100 Index Load Tag @)
01000 Index Store Tag D
10000 Hit Invalidate @)
10100 Cache Barrier
11000 Index Load Data @)
11100 Index Store Data (D)
00001 Index WriteBack Invalidate (D)
00101 Index Load Tag (D)
01001 Index Store Tag (D)
10001 Hit Invalidate (D)
10101 Hit WriteBack Invalidate (D)
11001 Index Load Data (D)
11101 Index Store Data (D)
00011 Index WriteBack Invalidate S)
00111 Index Load Tag S)
01011 Index Store Tag S)
10011 Hit Invalidate S)
10111 Hit WriteBack Invalidate S)
11011 Index Load Data S)
11111 Index Store Data S)

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

192

Chapter 10.

10.2 Index Invalidate (I)

Index Invalidate (I) sets a block in the primary instruction cache to Invalid.
VA[13:6] defines the address and VA[0] defines the way to be invalidated.

The invalidation takes place by writing the primary instruction cache state bit to 0
(Invalid). This also sets the instruction cache state parity bit to 0.

The LRU bit does not change.
Parity check is suppressed.

10.3 Index WriteBack Invalidate (D)

Version 2.0 of January 29, 1997

Index WriteBack Invalidate (D) sets a block in the primary data cache to Invalid.
VA[13:5] defines the address and VA[0] defines the way to be invalidated.

The invalidation takes place by writing the following bits:
¢ primary data cache state bits are set to 00 (Invalid)
e the SCWay bit is set to 0
e the StateMod bits = 001 (Normal)
¢ the state parity is set to 0.
The LRU bit does not change.

If the StateMod of the block to be invalidated = 010, (Inconsistent), the block in the
primary data cache must be written back to the secondary cache.

The address and way in the secondary cache to be written back to are read out of
the primary data cache tag address and secondary way fields and all 32 bytes are
written back.

Only the data field of the secondary cache is modified by this instruction since the
processor follows state and data subset rules.

Since the CE bit is not defined in the R10000 processor, this instruction no longer
has a CPO ECC register mode.

MIPS R10000 Microprocessor User’s Manual

CACHE Instructions

193

10.4 Index WriteBack Invalidate (S)

The Index WriteBack Invalidate (S) instruction sets a block in the secondary cache
to Invalid and writes back any dirty data to the System interface unit. This
operation extends to any blocks in the primary data or instruction caches which
are subsets of the secondary cache block.

The CACHE instruction physical address, PA[Cachesize-2..Blocksize], defines
the address and PA[0] defines the way to be invalidated.

The invalidation occurs in the following sequence:

1.

The processor reads the STag, PIdx, and State bits from the secondary cache
tag array. If State = 00 (Invalid) no further activity takes place. If there is a
valid entry, then the STag is used to interrogate the primary instruction and
data caches.

The processor reads each subset block from the primary instruction cache. If
ITag = STag and IState = 1 (Valid) then the block is invalidated by writing the
IState bit to 0 (Invalid) and the IState parity bit to 0.

Read each subset block from the primary data cache. If DTag = STag and
DState is not equal to 00 (Invalid), then write the DState bits = 00 (Invalid), the
StateMod bits = 001 (Normal), the SCWay bit = 0, and the DState parity bit =
0. If the original block is DState = 11, (Dirty) and StateMod = 010,
(Inconsistent), also write this block back to the secondary cache using the DTag
and the SCWay bit from the primary data tag array.

Set the state of the secondary cache block to 00 (Invalid). Since the secondary
cache is designed so all tag bits must be written at once, the Tag, VA, and ECC
bits are also written. The tag is written with the PA and VA[13:12] (virtual
index) of the original CACHE instruction address. The ECC is generated.

If the secondary cache block’s original State bits were 11, (Dirty), the block is
written back to the system interface unit. If the block’s State was Shared or
CleanExclusive the system interface unit is notified with a Tag Invalidation
request that the block has been deleted.

The MRU bit is set to point away from the block invalidated unless the line was
already invalid.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

194 Chapter 10.

10.5 Index Load Tag (I)

Index Load Tag (I) reads the primary instruction cache tag fields into the CP0O
TagLo and TagHi registers. VA[13:6] defines the address and VA[0] defines the
way of the tag to be read.

All parity errors caused by Index Load Tag (I) are ignored.

The following mapping defines the operation:

TagLo[0] = Tag parity bit
TagLo[2] = State parity bit
TagLol[3] = LRU bit
TagLo[6] = State bit
TagLo[31:8] = Tag[35:12]
TagHi[3:0] = Tag[39:36]

All other CP0O TagLo and TagHi bits are set to 0.

10.6 Index Load Tag (D)

Index Load Tag (D) reads the primary data cache tag fields into the CP0 TagLo and
TagHiregisters. VA[13:5] defines the address and VA[0] defines the way of the tag
to be read.

All parity errors caused by Index Load Tag (D) are ignored. The following
mapping defines the operation:

TagLo[0] = Tag parity bit
TagLol[1] = SCWay
TagLo[2] = State parity bit
TagLol[3] = LRU bit
TagLo[7:6] = State bits
TagLo[31:8] = Tag[35:12]
TagHil[3:0] = Tag[39:36]
TagHi[31:29] = StateMod bits

All other CP0 TagLo and TagHi bits are set to 0.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

CACHE Instructions

10.7 Index Load Tag (S)

195

Index Load Tag (S) reads the secondary cache tag fields into the CP0 TagLo and
TagHi registers. The PA[Cachesize-2..Blocksize] defines the address and PA[0]

defines the way to be read.

All parity and ECC errors caused by Index Load Tag (D) are ignored.

The following mapping defines the operation:

TagLo[6:0]
TagLo[8:7]
TagLo[11:10]
TagLo[31:14]
TagHil[3:0]
TagHi[31]
All other CP0 TagLo and TagHi register bits are set to 0.

10.8 Index Store Tag (I)

Index Store Tag (I) stores the CP0 TagLo and TagH;i registers into the primary

= Tag ECC bits

= Virtual index bits
= State bits

= Tag[35:18]

= Tag[39:36]

= MRU Bit

instruction cache tag array. VA[13:6] defines the address and VA[0] defines the
way of the tag to be written.

The following mapping defines the operation:

Tag parity bit
State parity bit
LRU bit
State bit
Tag[35:12]
Tag[39:36]

All the Tag fields, including parity, are directly written.

= TagLo[0]

= TagLo[2]

= TagLol[3]

= TagLol[6]

= TagLo[31:8]
= TagHil[3:0]

Parity check is suppressed for all Index Store Tags.

MIPS R10000 Microprocessor User’s Manual

Version 2.0 of January 29, 1997

196 Chapter 10.

10.9 Index Store Tag (D)

Index Store Tag (D) stores the CP0 TagLo and TagHi registers into the primary data
cache tag array. VA[13:5] defines the address and VA[0] defines the way of the tag
to be written.

The following mapping defines the operation:

Tag parity bit = TagLo[0]
SCWay = TagLol[1]
State parity bit = TagLo[2]

LRU bit = TagLol[3]
State bits = TagLo[7:6]
Tag[35:12] = TagLo[31:8]
Tag[39:36] = TagHi[3:0]
StateMod bits = TagHi[31:29]

All Tag fields, including parity, are directly written.
Parity check is suppressed for all Index Store Tags.

10.10 Index Store Tag (S)

Index Store Tag (S) stores fields from the CPO TagLo and TagHi registers into the
secondary cache tag and MRU array fields. The PA[Cachesize-2..Blocksize]
defines the address and PA[0] defines the way to be read.

The following mapping defines the operation:

Tag ECC bits = TagLo[6:0]
Virtual index bits = TagLo[8:7]
State bits = TagLo[11:10]
Tag[35:18] = TagLo[31:14]
Tag[39:36] = TagHi[3:0]
MRU bit = TagHi[31]

All Tag fields, including ECC, are directly written.
Parity check is suppressed for all Index Store Tags.

Version 2.0 of January 29, 1997 MIPS R10000 Microprocessor User’s Manual

CACHE Instructions 197

10.11 Hit Invalidate (I)

Hit Invalidate (I) invalidates an entry in the instruction cache which matches the
PA of the CACHE instruction. Both way tags at VA[13:6] are read from the
instruction cache.

If the IState is 1 (Valid), and the PA of the CACHE instruction matches the Tag
from the instruction cache tag array, the IState bit of the entry is written to 0
(Invalid) and the IState parity bit is written to 0.

The LRU bit does not change.
Parity error is checked.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

10.12 Hit Invalidate (D)

Hit Invalidate (D) invalidates an entry in the data cache which matches the PA of
the CACHE instruction. Both ways tags at VA[13:5] are read from the data cache.

If the DState is not equal to 00 (Invalid) and the PA of the CACHE instruction
matches the DTag from the data cache tag array, then the State bits are written to
00 (Invalid), the SCWay bit = 0, the StateMod bits = 001, (Normal), and the DState
parity = 0.

The LRU bit is left unchanged.
Parity check is enabled.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

198

10.13 Hit Invalidate (S)

Hit Invalidate (S) invalidates all entries in the secondary, primary instruction, and
primary data caches which match the PA of the CACHE instruction. The following
sequence takes place:

10.14 Cache Barrier

Version 2.0 of January 29, 1997

1.

Chapter 10.

The processor reads the Tags from both ways of the secondary cache at the
address pointed to by the PA of the CACHE instruction. If the tag entry’s STag
matches the CACHE instruction PA, and the State of the entry is not equal to
00 (Invalid), then a Hit has occurred in that entry. If there is no Hit, the CACHE
instruction completes.

The processor checks each entry in the primary caches to determine which
corresponds to the CACHE instruction PA and the Pldx read from the
secondary cache tag array. Any entry which matches is invalidated. No write
back is required by Hit Invalidate (5).

The processor sets the tag array entry of the secondary cache block which was
hit to State = 00 (Invalid), Tag = PA of CACHE instruction, and PIdx =
VA[13:12] of CACHE instruction.

ECC is generated.
The MRU bit is written to point to the way opposite to that being invalidated.

If the processor Eliminate Request mode bit, PrcElmReq, is set, a processor
eliminate request is sent to notify the external agent that a block in the
secondary cache has been invalidated.

Hit Invalidate (S) sets the CH bit if it hits in the secondary cache.

Once the CH bit is set it stays set until cleared by a MTCO instruction, or the
next CacheOp that can change the CH bit.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

Cache Barrier does not change any cache fields. It is used when serialization of a
CACHE instruction is needed without unwanted side effects. For more
information, see the section titled the section titled “Serial Operation of CACHE
Instructions,” in this chapter.

MIPS R10000 Microprocessor User’s Manual

CACHE Instructions 199

10.15 Hit Writeback Invalidate (D)

Hit Writeback Invalidate (D) invalidates an entry in the primary data cache which
matches the PA of the CACHE instruction. In addition, it writes back to the
secondary cache any DirtyExclusive or Inconsistent data found in the primary data
cache. Both way DTags at VA[13:5] are read from the data cache.

If the DState is not equal to 00 (Invalid) and PA of the CACHE instruction matches
the DTag, then the DState bits of the entry are set to 00 (Invalid), the SCWay is set
to 0, the DState parity is set to 0, and the StateMod bits are set to 001, (Normal).

The LRU bit is left unchanged.

If the state of the block to be invalidated was found to be StateMod = 010,
(Inconsistent), the block in the primary data cache must be written back to the
secondary cache. The address and way in the secondary cache to be written back
to are read out of the primary data cache Tag Address and secondary way fields,
and all 32 bytes are written back.

Only the data field of the secondary cache is modified by this instruction since the
processor obeys State and data subset rules.

Since the CE bit is not defined in the R10000 processor, this instruction no longer
has an ECC register mode.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

200

Chapter 10.

10.16 Hit WriteBack Invalidate (S)

Hit Writeback Invalidate (S) checks for a block which matches the CACHE
instruction PA in the secondary cache, invalidates it, and writes back any dirty
data to the System interface unit. This operation extends to any blocks in the
primary data or instruction caches which are subsets of the secondary cache block.
The operation takes place in the following sequence:

1.

7.

The processor reads the STag, PIdx, and State bits from both ways of the
secondary tag array.

If the PA of the CACHE instruction matches the STag, and the State does not
equal 00 (Invalid), a hit has occurred. If there is a hit, the STag is used to
interrogate the primary caches. If there is not a hit, the instruction ends.

The processor reads each subset block from the primary instruction cache. If
there is a match then invalidate the block by writing the IState bit to 0 (Invalid)
and the IState parity bit to 0.

Read each subset block from the primary data cache. If there is a match then
write the DState bits = 00 (Invalid), the StateMod bits = 001 (Normal), the
SCWay bit = 0, and the DState parity bit = 0. If the original State of any subset
block is StateMod = 010, (Inconsistent), also write it back to the secondary
cache using the DTag and the secondary way bit from the primary data tag
array.

Write the State of the secondary cache block = 00 (Invalid). Since the secondary
cache is designed so all tag bits must be written at once, the STag, PIdx, and
ECC bits are also written. The STag is written with whatever the PA and
VA[13:12] of the original CACHE instruction were. The Tag ECC is generated.

If the secondary block’s original State bits were 11, (Dirty) then the block is
written back to the system interface unit. If the block’s State was Shared or
CleanExclusive the system interface unit is simply notified that the block has
been deleted with a “Tag Invalidation” request.

The MRU bit is set to point away from the block invalidated.

Hit WriteBack Invalidate (S) set the CH bit if it hits in the secondary cache. Once
the CH bit is set it stays set until cleared by a MTCO Instruction.

Hit CacheOps can cause cache error exceptions if they check ECC or parity bits.

Version 2.0 of January 29, 1997

MIPS R10000 Microprocessor User’s Manual

CACHE Instructions 201

10.17 Index Load Data (I)

Index Load Data (I) loads a single instruction from the primary instruction cache
into the CPO TagHji, TagLo, and ECC registers. A predecoded instruction in R10000
is 36 bits of data and one bit of parity. The address of the target instruction is
VA[13:2] of the CACHE instruction. The way of the target instruction is VA[0] of
the CACHE instruction. The instruction itself is loaded into CP0 TagHi[3:0] and
TagLo[31:0]. The parity bit is loaded into CPO ECC[0]. The tag field is not read.

Parity checking is suppressed during operation of Index Load Data (I).

10.18 Index Load Data (D)

Index Load Data (D) loads a singleword of data and the corresponding four bits
of byte parity into CP0 TagLo and ECC. The address of the target singleword is
VA[13:2] of the CACHE instruction. The way of the target singleword is VA[0] of
the CACHE instruction. The singleword of data will be loaded into the CP0 TagLo
register. The byte parity will be loaded into CP0 ECC[3:0] register. The tag field is
not read.

Parity checking is suppressed during operation of Index Load Data (D).

10.19 Index Load Data (S)

Index Load Data (S) loads a doubleword of data and all 10 check bits into the CP0
TagHi, TagLo, and ECC registers. The address of the target doublewords comes
from the PA of the CACHE instruction. The way comes from PA[0] of the CACHE
instruction. The high word will be loaded into CP0 TagHi and the low word of
data will be loaded into CP0 TagLo. The check bits will be loaded into CP0
ECC[9:0]. The MRU field is unmodified.

ECC correction and checking is suppressed during Index Load Data (S).

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997

202

Chapter 10.

10.20 Index Store Data (I)

Index Store Data (I) stores a single instruction into the primary instruction cache.
The address where this instruction will be written comes from VA[13:2] of the
CACHE instruction. The way where the data will be written comes from VA[0] of
the CACHE instruction. The instruction itself comes from CP0 TagHi[3:0] and
TagLo[31:0]. The parity bit is also stored. This comes from CP0 ECC[0]. The data to
be stored bypasses the predecode and is written directly into the instruction cache.
The tag field is unmodified.

10.21 Index Store Data (D)

Index Store Data (D) stores a word of data and its byte parity into the data cache
from the CP0 TagLo and ECC registers. The address where this word will be
written is defined by VA[13:2] of the CACHE instruction. The way is defined by
VA[0]. The data word comes from CP0 TagLo. The parity bits come from CP0O
ECCI3:0]. The data cache tag array including the LRU bit is left unchanged.

10.22 Index Store Data (S)

Version 2.0 of January 29, 1997

Index Store Data (S) stores a quadword of data and 10 check bits into the secondary
cache data array. It stores a doubleword of data from CP0 TagHi and TagLo and
pads the remaining doubleword with zeroes. This allows the ECC and parity,
which are based on the quadword, to be valid for the doubleword of data stored.
The address of the quadword stored is defined by the PA of the CACHE
instruction, and the way is defined by PA[0]. The data stored in the non-padded
doubleword comes from CP0 TagHi and TagLo. The check bits are stored from
ECC[9:0]. The tag array including the MRU bit is left unchanged.

MIPS R10000 Microprocessor User’s Manual

11. JTAG Interface Operation

The JTAG interface is implemented according to the standard IEEE 1149.1 test
access port protocol specifications.

‘FErrata

The JTAG interface accesses the JTAG controller and instruction register as well as
a boundary scan register. The JTAG operation does not require DCOKk to be
asserted or SysClk to be running; however, if DCOK is asserted the SysClk must

run at the specified minimum frequency or the core logic may be damaged.

MIPS R10000 Microprocessor User’s Manual Version 2.0 of January 29, 1997203

204

Chapter 11.

11.1 Test Access Port (TAP)

TAP Controller (Input)

Version 2.0 of January 29, 1997

The test access port (TAP) consists of four interface signals. These signals are used
to control the serial loading and unloading of instructions and test data, as well as
to execute tests.

The TAP consists of the following signals:

JTDI: Serial data input (Input signal)
JTDO: Serial data output (Output signal)
JTMS: Mode select (Input signal)
JTCK: Clock (Input signal)

The timing and the relationship of the TAP signals follows the IEEE 1149.1
standard protocol.

The R10000 processor implements the 16-state TAP controller specified by the
IEEE 1149.1 standard in the following manner:

¢ The JTMS signal operates the state machine synchronized by the JTCK
signal.

* The TAP controller is reset by keeping the JTMS signal asserted
through five consecutive edges of JTCK. This reset condition sets the
reset