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The MIPS Processor and System V ABI

The System V Application Binary Interface (ABI) defines a system interface for
compiled application programs. It establishes a standard binary interface for ap-
plication programs on systems that implement the interfaces defined in the System
V Interface Definition, Third Edition. This includes systems that have implemented
UNIXO System V, Release 4.

This document supplements the generic System V ABI, and it contains information
specific to System V implementations built on the MIPSO RISC processor architec-
ture. These two documents constitute the complete System V Application Binary
Interface specification for systems that implement the MIPS RISC processor archi-
tecture.
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How to Use the MIPS ABI Supplement

This document contains information referenced in the generic System V ABI that
may differ when System V is implemented on different processors. Therefore, the
generic Application Binary Interface is the prime reference document, and this
supplement is provided to fill gaps in that specification.

As with the System V ABI, this specification references other available reference
documents, especially MIPS RISC Architecture (Copyright 00 1990, MIPS Computer
Systems, Inc., ISBN 0-13-584749-4). All the information referenced by this supple-
ment is part of this specification, and just as binding as the requirements and data
explicitly included here.

Evolution of the ABI Specification

The System V Application Binary Interface will evolve over time to address new tech-
nology and market requirements, and will be reissued at three-year intervals.
Each new edition will contain extensions and additions to increase the capabilities
of applications that conform to the ABI.

As with the System V Interface Definition, the ABI implements Level 1 and Level 2

support for its constituent parts. Level 1 support indicates a portion of the speci-
fication that will be supported indefinitely, while Level 2 support indicates a por-
tion of the specification that may be withdrawn or altered when the next edition of
the System V ABI is made available.

All components of this document and the generic System V ABI have Level 1 sup-
port unless they are explicitly labeled as Level 2.
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Software Distribution Formats

Physical Distribution Media

The approved media for physical distribution of ABI-conforming software are list-
ed below. ABI-conforming systems are not required to accept any of these media.
A conforming system can install all software through its network connection.

60 MByte 1/4-inch cartridge tape in QIC-24 format!
20 MByte 1/4-inch cartridge tape in QIC-120 format 2
1/2-inch, 9-track magnetic tape recorded at 1600 bpi

1.44 MByte 3 1/2-inch floppy disk: double-sided, 80 cylinders/side, 18
sectors/cylinder, 512 bytes/sector

DDS Recording Format for Digital Audio Tape (DAT) DDSO01 Rev E - Jan-
uary, 1990 3

CD-ROM, ISO 9660 with Rockridge extensions

The QIC-24 cartridge tape data format is described in Serial Re-

corded Magnetic Tape Cartridge for Information Interchange (9 tracks,
10,000 FTPI, GCR, 60MB), Revision D, April 22, 1983. This docu-
ment is available from the Quarter-Inch Committee (QIC) through
Freeman Associates, 311 East Carillo St., Santa Barbara, CA 93101.

The QIC-120 cartridge tape data format is described in Serial Mag-
netic Tape Cartridge for Information Interchange, Fifteen Track, 0.250
in (6.30mm), 10,000 bpi (394 bpmm) Streaming Mode Group Code Re-
cording, Revision D, February 12,1987. This document is available
from the Quarter-Inch Committee (QIC) through Freeman Associ-
ates, 311 East Carillo St., Santa Barbara, CA 93101

The DDS recording format is specified in ANSI Standard X3B5/
88-185A, DDS Recording Format.
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Machine Interface

Processor Architecture

MIPS RISC Architecture processor (Copyright [0 1990, MIPS Computer Systems,
Inc., ISBN 0-13-584749-4) defines the processor architecture for two separate In-
struction Set Architectures (ISA), MIPS | and MIPS Il. The MIPS I Instruction Set
Architecture provides the architectural basis for this processor supplement to the
generic ABI. Programs intended to execute directly on a processor that imple-
ments this ISA use the instruction set, instruction encodings, and instruction se-
mantics of the architecture. Extensions available in the MIPS Il ISA are explicitly
not a part of this specification.

Three points deserve explicit mention.

m A program can assume all documented instructions exist.
m A program can assume all documented instructions work.

m A program can use only the instructions defined by the MIPS I ISA. In oth-
er words, from a program’s perspective, the execution environment provides
a complete and working implementation of the MIPS | ISA.

This does not mean that the underlying implementation provides all instructions
in hardware, only that the instructions perform the specified operations and pro-
duce the specified results. The ABI neither places performance constraints on sys-
tems nor specifies what instructions must be implemented in hardware.

Some processors might support the MIPS | ISA as a subset, providing additional

instructions or capabilities, e.g., the R6000 processor. Programs that use those ca-
pabilities explicitly do not conform to the MIPS ABI. Executing those programs on
machines without the additional capabilities gives undefined behavior.
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Data Representation

Byte Ordering

The architecture defines an 8-bit byte , 16-bit halfword , a 32-bit word , and a 64-
bit doubleword . By convention there is also a 128-bit quadword . Byte ordering
defines how the bytes that make up halfwords, words, doublewords, and quad-
words are ordered in memory. Most significant byte (MSB) byte ordering, or big
endian as it is sometimes called, means that the most significant byte is located in
the lowest addressed byte position in a storage unit (byte 0).

Although the MIPS processor supports either big endian or little endian byte or-
dering, an ABI-conforming system must support big endian byte ordering.

The figures below illustrate the conventions for bit and byte numbering within
various width storage units. These conventions hold for both integer data and
floating-point data, where the most significant byte of a floating-point value holds
the sign and at least the start of the exponent.

Figure 3-1: Bit and Byte Numbering in Halfwords

0
15

msb

1
7

Isb

Figure 3-2: Bit and Byte Numbering in Words

" msb ! ?  lsb
31 24123 16 |15 7
Figure 3-3: Bit and Byte Numbering in Doublewords

0 msb 1 2 3
31 24123 16|15 7
4 5 6 7

Isb
31 24123 16]15 7
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Figure 3-4: Bit and Byte Numbering in Quadwords

0 1 2 3
msb
31 24]23 16[15 7
4 5 6 7
31 2423 1615 7
8 9 10 11
31 24|23 1615 7
12 13 14 15
Isb
31 2423 1615 7
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Fundamental Types

Figure 3-5 shows the correspondence between ANSI C’s scalar types and the pro-
cessor’s.

Figure 3-5: Scalar Types

Alignment
Type C sizeof (bytes) MIPS
char :
1 1 unsigned byte
unsigned char 9 y
signed char 1 1 signed byte
short 2 2 signed halfword
signed short
unsigned short 2 2 unsigned halfword
Integral int
signed int .
long 4 4 signed word
signed long
enum
unsigned int i
unsigned long 4 4 unsigned word
- any-type * ]
Pointer any-type  (*)() 4 4 unsigned word
Floating- float 4 4 single-precision
point double 8 8 double-precision
long double 8 8 double-precision

A null pointer (for all types) has the value zero.
Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most
strictly aligned components. The size of any object, including aggregates and
unions, is always a multiple of the alignment of the object. An array uses the same
alignmentas its elements. Structure and union objects can require padding to meet
size and alignment constraints. The contents of any padding is undefined.

®  Anentire structure or union object is aligned on the same boundary as its

3-4 MIPS ABI SUPPLEMENT



most strictly aligned member.

m  Each member is assigned to the lowest available offset with the appropri-
ate alignment. This may require internal padding, depending on the previ-
ous member.

m  If necessary, a structure’s size is increased to make it a multiple of the
alignment. This may require tail padding, depending on the last member.

In the following examples, byte offsets of the members appear in the upper left cor-
ners.

Figure 3-6: Structure Smaller Than a Word

struct { Byte aligned, sizeof is1

char c;
g 0 ¢

Figure 3-7: No Padding

struct { Word aligned, sizeof is8
char c;
char d; 0 ¢ 1 d 2 S
short s; Z
long n; n
h
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Figure 3-8: Internal Padding

struct { Halfword aligned, sizeof is4
char c;
short s; 0 ¢ 1 pad
h
2 s

Figure 3-9: Internal and Tail Padding

struct { Doubleword aligned, sizeof is 24
char c;
double d; 0 ¢ 1 pad
short s;
5 4 pad
8 d
12 d
16 s 18 pad
20 pad
Figure 3-10: union Allocation
union { Word aligned, sizeof is4
char c; T
short s; ° ¢ pad
it j; 5 >
h S pad
° i
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Bit—Fields

C struct and union definitions can have bit-fields, defining integral objects with a
specified number of bits. Figure 3-11 lists the bit-field ranges.

Figure 3-11: Bit—Field Ranges

Bit-field Type Width w Range
signed char -2W1 o 2wl
char 1to8 0to 21
unsigned char 0to 21
signed short 21to 2% 11
short 11016 2%l o 2W11
unsigned short 0to2Ww?!
signed int 2%l o 2W-1g
int 11032 -2Wlto 2%l
unsigned int 0to 21
signed long -2Wlto 2%l
long 1to 32 2Wlto 2%l
unsigned long 0to2W1

Plain bit-fields always have signed or unsigned values depending on whether the
basic type is signed or unsigned. In particular, char bit-fields are unsigned while
short, int, and long bit-fields are signed. A signed or unsigned modifier overrides
the default type.

In a signed bit-field, the most significant bit is the sign bit; sign bit extension occurs
when the bit-field is used in an expression. Unsigned bit-fields are treated as sim-
ple unsigned values.

Bit-fields follow the same size and alignment rules as other structure and union
members, with the following additions:

[ ] Bit-fields are allocated from left to right (most to least significant).
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NOTE

A bit-field must reside entirely in a storage unit that is appropriate for
its declared type. Thus a bit-field never crosses its unit boundary.
However, an unnamed bit-field of non-zero width is allocated in the
smallest storage unit sufficient to hold the field, regardless of the de-
fined type.

Bit-fields can share a storage unit with other struct/union memobers,
including members that are not bit-fields. Of course, struct members
occupy different parts of the storage unit.

Unnamed types of bit-fields do not affect the alignment of a structure or
union, although member offsets of individual bit-fields follow the align-
ment constraints.

The X3J11 ANSI C specification only allows bit—fields of type int, with or without
a signed or unsigned modifier.

Figures 3-12 through 3-17 provide examples that show the byte offsets of struct
and union members in the upper left corners.

Figure 3-12: Bit Numbering

0x01020304 ° 01 Y 2 03 [® o4

31 24 (23 16 (15 8|7 0

Figure 3-13: Left-to-Right Allocation

struct { Word aligned, sizeof is 4
int j:5; :
int k:6; 0 Kk m oad
int m:7, 3L~ 276 21|20 14]13 0
2
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Figure 3-14: Boundary Alignment

struct { Word aligned, sizeof is 12
short s:9; 5 . 3
int ]:9; 31 S 23 |22 ] 14113 pad 8|7 c
char c; 2 3
short t:9; a1 t sl PAd 2 U 5 pad
short u:9; 5
char d; d pad
}. 3 24123
Figure 3-15: Storage Unit Sharing
struct { Halfword aligned, sizeof is 2
char c;
short s:8; ° ¢ s
}_ 15 8|7 0
Figure 3-16: Allocation
union { Halfword aligned, sizeof is 2
char c; 5 -
\ short s:8; 5 c ol pad
’ 0 1
s
15 8|7 pad 0

LOW-LEVEL SYSTEM INFORMATION
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Figure 3-17: Unnamed Bit-Fields

struct { Byte aligned, sizeof is 9
char C; 0 c 1
int 0; 31 24123
char d; 4 d 5
short 9; 31 24|23
char e; 8 e
char : 81 24
3

As the examples show, int bit-fields (including signed and unsigned) pack more
densely than smaller base types. One can use char and short bit-fields to force par-
ticular alignments, but int generally works better.
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Function Calling Sequence

This section describes the standard function calling sequence, including stack
frame layout, register usage, parameter passing, etc. The system libraries de-
scribed in Chapter 6 require this calling sequence.

CPU Registers

The MIPS I ISA specifies 32 general purpose 32-bit registers; two special 32-bit reg-
isters that hold the results of multiplication and division instructions; and a 32-bit
program counter register. The general registers have the names $0..$31. By con-
vention, there is also a set of software names for some of the general registers. Fig-
ure 3-18 describes the conventions that constrain register usage. Figure 3-19 de-
scribes special CPU registers.

Not all register usage conventions are described. In particular, register usage con
NOTE | ventions in languages other than C are not included, nor are the effects of high
optimization levels. These conventions do not affect the interface to the system
| libraries described in Chapter 6.
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Figure 3-18: General CPU Registers

Register  Software
Name Name

Use

$0 zero
$at AT
$2..$3 vO—v1
$4..$7 a0-a3

$8-$15 t0—t7
$16-$23 s0-s7

$24..$25 t8—t9

$26-$27 ktO—kt1
$28 or $gp gp
$29 or $sp  sp

always has the value 0.

temporary generally used by assembler.

used for expression evaluations and to hold the integer
and pointer type function return values.

used for passing arguments to functions; values are not
preserved across function calls. Additional arguments
are passed on the stack, as described below.

temporary registers used for expression evaluation; val-
ues are not preserved across function calls.

saved registers; values are preserved across function
calls.

temporary registers used for expression evaluations;
values are not preserved across function calls. When
calling position independent functions $25 must contain
the address of the called function.

used only by the operating system.

global pointer and context pointer.

stack pointer.

$30 s8 saved register (like s0-s7 ).
$31 ra return address. The return address is the location to
which a function should return control.
3-12 MIPS ABI SUPPLEMENT



Figure 3-19: Special CPU Registers

Register

Name Use

pc program counter

hi multiply/divide special register. Holds the most
significant 32 bits of multiply or the remainder of
a divide

lo multiply/divide special register. Holds the least
significant 32 bits of multiply or the quotient of a
divide

Only registers $16..$23 and registers $28.$30 are preserved across a function
NOTE | call. Register $28 s not preserved, however, when calling position independent
code.

|
Floating—Point Registers

The MIPS ISA provides instruction encodings to move, load, and store values for
up to four co-processors. Only co-processor 1 is specified in a MIPS ABI compliant
system; the effect of moves, loads and stores to the other co-processors (0, 2, and 3)
is unspecified.

Co-processor 1 adds 32 32-bit floating-point general registers and a 32-bit control/
status register. Each even/odd pair of the 32 floating-point general registers can
be used as either a 32-bit single-precision floating-point register or as a 64-bit dou-
ble-precision floating-point register. For single-precision values, the even-num-
bered floating-point register holds the value. For double-precision values, the
even-numbered floating-point register holds the least significant 32 bits of the val-
ue and the odd-numbered floating-point register holds the most significant 32 bits
of the value. This is always true, regardless of the byte ordering conventions in use
( big endian or little endian).

Floating-point data representation is that specified in IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

Figure 3-20 describes the conventions for using the floating-point registers.
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Figure 3-20: Floating Point Registers

Register

Name Use

$f0..$2 used to hold floating-point type function re-
sults; single-precision uses $f0 and double-pre-
cision uses the register pair $f0..$f1. $f2..$f3 re-
turn values that are not used in any part of this
specification.

$f4..$f10 temporary registers.

$f12..$f14 used to pass the first two single- or double-pre-
cision actual arguments.

$f16..$f18 temporary registers.

$f20..$f30 saved registers; their values are preserved
across function calls.

fer3l control/status register. Contains control and

status data for floating-point operations, in-
cluding arithmetic rounding mode and the en-
abling of floating-point exceptions; it also indi-
cates floating-point exceptions that occurred in
the most recently executed instruction and all
floating-point exceptions that have occurred
since the register was cleared. This register is
read/write and is described more fully in the

NOTE

3-14

Only registers $f20.$f30 are preserved across a function call. All other float-
ing-point registers can change across a function call. However, functions
that use any of $f20.$f30 for single-precision operations only must still save
and restore the corresponding odd-numbered register since the odd-num-
bered register contents are left undefined by single-precision operations.
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NOTE

There are other user visible registers in some implementations of the architec-
ture, but these are explicitly not part of this processor supplement. A program that
uses these registers is not AB/ compliant and its behavior is undefined.

The Stack Frame

Each called function in a program allocates a stack frame on the run-time stack, if
necessary. A frame is allocated for each non-leaf function and for each leaf func-
tion that requires stack storage. A non-leaf function is one that calls other func-
tion(s); a leaf function is one that does not itself make any function calls. Stack
frames are allocated on the run-time stack; the stack grows downward from high
addresses to low addresses.

Each stack frame has sufficient space allocated for:

local variables and temporaries.

saved general registers. Space is allocated only for those registers that
need to be saved. For non-leaf function, $31 must be saved. If any of
$16..$23 or $29..$31 is changed within the called function, it must be saved
in the stack frame before use and restored from the stack frame before re-
turn from the function. Registers are saved in numerical order, with high-
er numbered registers saved in higher memory addresses. The register
save area must be doubleword (8 byte) aligned.

saved floating-point registers. Space is allocated only for those registers
that need to be saved. If any of $f20..$f30 is changed within the called func-
tion, it must be saved in the stack frame before use and restored from the
stack frame before return from the function. Both even- and odd-num-
bered registers must be saved and restored, even if only single-precision
operations are performed since the single-precision operations leave the
odd-numbered register contents undefined. The floating-point register
save area must be doubleword (8 byte) aligned.

function call argument area. In a non-leaf function the maximum number
of bytes of arguments used to call other functions from the non-leaf func-
tion must be allocated. However, at least four words (16 bytes) must al-
ways be reserved, even if the maximum number of arguments to any
called function is fewer than four words.

alignment. Although the architecture requires only word alignment, soft-
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ware convention and the operating system require every stack frame to be
doubleword (8 byte) aligned.

A function allocates a stack frame by subtracting the size of the stack frame from
$sp on entry to the function. This $sp adjustment must occur before $sp is used
within the function and prior to any jump or branch instructions.

Figure 3-21: Stack Frame

Base Offset Contents Frame
unspecified High addresses
variable size
(if present)
incoming arguments Previous

+16 |passed in stack frame

space for incoming
old $sp +0 arguments 1-4
locals and
temporaries
general register
save area Current
floating-point
register save area
argument
$sp +0 build area Low addresses

The corresponding restoration of $sp at the end of a function must occur after any
jump or branch instructions except prior to the jump instruction that returns from
the function. It can also occupy the branch delay slot of the jump instruction that
returns from the function.

Standard Called Function Rules

By convention, there is a set of rules that must be followed by every function that
allocates a stack frame. Following this set of rules ensures that, given an arbitrary
program counter, return address register $31, and stack pointer, there is a deter-
ministic way of performing stack backtracing. These rules also make possible pro-
grams that translate already compiled absolute code into position-independent
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code. See Coding Examples in this chapter.

Within a function that allocates a stack frame, the following rules must be ob-
served:

m  In position-independent code that calculates a new value for the gp regis-
ter, the calculation must occur in the first three instructions of the function.
One possible optimization is the total elimination of this calculation; a lo-
cal function called from within a position-independent module guaran-
tees that the context pointer gp already points to the global offset table.
The calculation must occur in the first basic block of the function.

m  The stack pointer must be adjusted to allocate the stack frame before any
other use of the stack pointer register.

m At most, one frame pointer can be used in the function. Use of a frame
pointer is identified if the stack pointer value is moved into another regis-
ter, after the stack pointer has been adjusted to allocate the stack frame.
This use of a frame pointer must occur within the first basic block of the
function before any branch or jump instructions, or in the delay slot of the
first branch or jump instruction in the function.

m  There is only one exit from a function that contains a stack adjustment: a
jump register instruction that transfers control to the location in the return
address register $31. This instruction, including the contents of its branch
delay slot, mark the end of function.

m  The deallocation of the stack frame, which is done by adjusting the stack
pointer value, must occur once and in the last basic block of the function.
The last basic block of a function includes all of the non control-transfer in-
structions immediately prior to the function exit, including the branch de-
lay slot.

Argument Passing

Arguments are passed to a function in a combination of integer general registers,
floating-point registers, and the stack. The number of arguments, their type, and
their relative position in the argument list of the calling function determines the
mix of registers and memory used to pass arguments. General registers $4..$7 and
floating-point registers $f12 and $f14 pass the first few arguments in registers.
Double-precision floating-point arguments are passed in the register pairs $f12,
$f13 and $f14, $f15; single-precision floating-point arguments are passed in regis-
ters $f12 and $f14.
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NOTE

These argument passing rules apply only to languages such as C that do not do
dynamic stack allocation of structures and arrays. Ada is an example of a lan-
guage that does dynamic stack allocation of structures and arrays.

In determining which register, if any, an argument goes into, take into account the
following considerations:

3-18

All integer-valued arguments are passed as 32-bit words, with signed or
unsigned bytes and halfwords expanded (promoted) as necessary.

If the called function returns a structure or union, the caller passes the ad-
dress of an area that is large enough to hold the structure to the function
in $4. The called function copies the returned structure into this area be-
fore it returns. This address becomes the first argument to the function for
the purposes of argument register allocation and all user arguments are
shifted down by one.

Despite the fact that some or all of the arguments to a function are passed
in registers, always allocate space on the stack for all arguments. This
stack space should be a structure large enough to contain all the argu-
ments, aligned according to normal structure rules (after promotion and
structure return pointer insertion). The locations within the stack frame
used for arguments are called the home locations.

At the call site to a function defined with an ellipsis in its prototype, the
normal calling conventions apply up until the first argument correspond-
ing to where the ellipsis occurs in the parameter list. If, in the absence of
the prototype, this argument and any following arguments would have
been passed in floating-point registers, they are instead passed in integer
registers. Arguments passed in integer registers are not affected by the el-
lipsis.

This is the case only for calls to functions which have prototypes contain-

ing an ellipsis. A function without a prototype or without an ellipsis in a
prototype is called using the normal argument passing conventions.
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m  When the first argument is integral, the remaining arguments are passed
in the integer registers.

m  Structures are passed as if they were very wide integers with their size
rounded up to an integral number of words. The fill bits necessary for
rounding up are undefined.

m A structure can be split so a portion is passed in registers and the remain-
der passed on the stack. In this case, the first words are passed in $4, $5,
$6, and $7 as needed, with additional words passed on the stack.

m Unions are considered structures.

The rules that determine which arguments go into registers and which ones must
be passed on the stack are most easily explained by considering the list of argu-
ments as a structure, aligned according to normal structure rules. Mapping of this
structure into the combination of stack and registers is as follows: up to two lead-
ing floating-point arguments can be passed in $f12 and $f14; everything else with
a structure offset greater than or equal to 16 is passed on the stack. The remainder
of the arguments are passed in $4..$7 based on their structure offset. Holes left in
the structure for alignment are unused, whether in registers or in the stack.

The following examples in Figure 3-22 give a representative sampling of the mix
of registers and stack used for passing arguments, where d represents double-pre-
cision floating-point values, s represents single-precision floating-point values,
and n represents integers or pointers. This list is not exhaustive.

See the section “Variable Argument List” later in this section for more information
about variable argument lists.
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Figure 3-22: Examples of Argument Passing

Argument List

Register and Stack Assignments

di, d2

sl,s2

sl,d1l

di, sl

nl, n2,n3, n4
di, ni, d2
di, nl, n2
sl,nl, n2

ni, n2, n3,d1
nl, n2,n3,sl
ni, n2,d1
ni, d1i
sl,s2,s3, s4
sl,nl, s2,n2
di,sl,s2
s1,s2,d1

ni, sl, n2,s2
nl, sl,n2,n3
nl, n2,sl,n3

$f12, $f14

$f12, $f14

$f12, $f14

$f12, $f14

$4, $5, $6, $7
$f12, $6, stack
$f12, $6, $7
$f12, $5, $6

$4, $5, $6, stack
$4, $5, $6, $7

$4, $5, (%6, $7)
$4, (%6, $7)
$f12, $f14, $6, $7
$f12, $5, $6, $7
$f12, $f14, $6
$f12, $f14, ($6, $7)
$4, $5, $6, $7

$4, $5, $6, $7

$4, $5, $6, $7

In the following examples, an ellipsis appears in the second argu-

ment slot.
ni, di, d2
sl,nl
s1,nl,dil
di, nl
di, ni, d2

$4, ($6, $7), stack
$f12, $5

$f12, $5, ($6, $7)
$f12, 6

$f12,$6, stack
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Function Return Values

A function can return no value, an integral or pointer value, a floating-point value
(single- or double-precision), or a structure; unions are treated the same as struc-
tures.

A function that returns no value (also called procedures or void functions) puts no
particular value in any register.

A function that returns an integral or pointer value places its result in register $2.

A function that returns a floating-point value places its result in floating-point reg-
ister $f0. Floating-point registers can hold single- or double-precision values.

The caller to a function that returns a structure or a union passes the address of an
area large enough to hold the structure in register $4. Before the function returns
to its caller, it will typically copy the return structure to the area in memory point-
ed to by $4; the function also returns a pointer to the returned structure in register
$2. Having the caller supply the return object’s space allows re-entrancy.

Structures and unions in this context have fixed sizes. The ABI does not specify
NOTE | how to handle variable sized objects.

Both the calling and the called function must cooperate to pass the return value
successfully:

m  The calling function must supply space for the return value and pass its
address in the stack frame.

m  The called function must use the address from the frame and copy the re-
turn value to the object so supplied.

Failure of either side to meet its obligations leads to undefined program behavior.

These rules for function return values apply to languages such as C, but do not
NOTE | necessarily apply to other languages. Ada is one language to which the rules do
not apply.
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Operating System Interface

Virtual Address Space

Processes execute in a 31-bit virtual address space with addresses from 0 to 2811,
Memory management hardware translates virtual addresses to physical address-
es, which hides physical addressing and allows a process to run anywhere in the
real memory of the system. Processes typically begin with three logical segments,
commonly called text, data, and stack. As Chapter 5 describes, dynamic linking
creates more segments during execution, and a process can create additional seg-
ments for itself with system services.

Page Size

Memory is organized by pages, which are the smallest units of memory allocation
in the system. Page size can vary from one system to another, depending on the
processor, memory management unit, and system configuration. Processes can
call sysconf(BA_OS) to determine the current page size.

Virtual Address Assignments

Although processes have the full 31-bit address space available, several factors
limit the size of a process.

m  The system reserves a configuration-dependent amount of virtual space.
m A tunable configuration parameter limits process size.

m A process that requires more memory than is available in system physical
memory and secondary storage cannot run. Although some physical
memory must be present to run any process, the system can execute pro-
cesses that are bigger than physical memory, paging them to and from sec-
ondary storage. Nonetheless, both physical memory and secondary stor-
age are shared resources. System load, which can vary from one program
execution to the next, affects the available amount of memory.
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Figure 3-23 shows virtual address configuration. The terms used in the figure are:
m  The loadable segments of the processes can begin at 0. The exact address-
es depend on the executable file format [see Chapters 4 and 5].

m  The stack and dynamic segments reside below the reserved area. Process-
es can control the amount of virtual memory allotted for stack space, as de-
scribed below.

m  The reserved area resides at the top of virtual space.

Figure 3-23: Virtual Address Configuration

Reserved End of memory
Ox7fffffff -
Stack and dynamic
segments
0 Loadable segments Beginning of memory
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Coding Guidelines

Operating system facilities, such as mmap(KE_QOS), allow a process to establish ad-
dress mappings in two ways. First, the program can let the system choose an ad-
dress. Second, the program can force the system to use an address the program
supplies. This second alternative can cause application portability problems, be-
cause the requested address might not always be available. Differences in virtual
address space between different architectures can be particularly troublesome, al-
though the same problems can arise within a single architecture.

Process address spaces typically have three segment areas that can change size
from one execution to the next: the stack [through setrlimit(BA_OS)], the data seg-
ment [through malloc(BA_0S)], and the dynamic segment area [through mmap(-
KE_OS)]. Changes in one area can affect the virtual addresses available for anoth-
er. Consequently, an address that is available in one process execution might not
be available in the next. A program that uses mmap(KE_OS) to request a mapping
at a specific address could work in some environments and fail in others. For this
reason, programs that establish a mapping in their address space should use an ad-
dress provided by the system.

Despite these warnings about requesting specific addresses, the facility can be
used properly. For example, a multiprocess application can map several files into
the address space of each process and build relative pointers among the data in the
files. This is done by having each process specify a certain amount of memory at
an address chosen by the system. After each process receives its own address from
the system, it can map the desired files into memory, at specific addresses within
the original area. This collection of mappings could be at different addresses in
each process but their relative positions would be fixed. Without the ability to spec-
ify addresses, the application cannot build shared data structures, because the rel-
ative positions for files in each process would be unpredictable.

Exception Interface

In MIPS architecture, there are two execution modes: user and kernel. Processes
run in user mode and the operating system kernel runs in kernel mode. The pro-
cessor changes mode to handle precise or interrupting exceptions. Precise excep-
tions, which result from instruction execution, are explicitly generated by a pro-
cess. This section, therefore, specifies those exception types with defined behavior.

An exception results in the operating system kernel taking some action. After han-
dling the exception the kernel restarts the user process. It is not possible to deter-
mine that an exception took place, except by apparent slower execution. Some ex-
ceptions are considered errors, however, and cannot be handled by the operating
system kernel. These exceptions cause either process termination or, if signal
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catching is enabled, send a signal to the user process (see signal(BA_OS)).

Figure 3-24 lists the correspondence between exceptions and the signals specified
by signal(BA_OS).

Figure 3-24: Hardware Exceptions and Signals

Exception Signal
TLB modification SIGBUS
Read TLB miss SIGSEGV
Read TLB miss SIGBUS
Write TLB miss SIGSEGV
Read Address Error SIGBUS
Write Address Error SIGBUS
Instruction Bus Error SIGBUS
Data Bus Error SIGBUS
Syscall SIGSYS
Breakpoint SIGTRAP
Reserved Instruction SIGILL
Coprocessor Unusable SIGILL
Arithmetic Overflow SIGFPE

A Read TLB miss generates a SIGSEGVsignal when unmapped memory is
NOTE | accessed. A Read TLB miss generates a SIGBUSsignal when mapped, but oth-
erwise inaccessible memory is accessed. In other words, a SIGBUSis gener-

| ated on a protection fault while a SIGSEGVis generated on a segmentation fault.

Floating-point instructions exist in the architecture, and can be implemented either
in hardware or software. If the Coprocessor Unusable exception occurs because of
a coprocessor 1 instruction, the process receives no signal. Instead, the system in-
tercepts the exception, emulates the instruction, and returns control to the process.

A process receives SIGILL for the Coprocessor Unusable exception only when the
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accessed coprocessor is not present and when it is not coprocessor 1.

System calls, or requests for operating system services, use the Syscall exception
for low level implementation. Normally, system calls do not generate a signal, but
SIGSYS can occur in some error conditions.

The ABI does not define the implementation of individual system calls. Instead,
NOTE | programs should use the system libraries described in Chapter 6. Programs with
embedded system call instructions do not conform to the ABI.

Stack Backtracing

There are standard called function rules for functions that allocate a stack frame
and because the operating system kernel initializes the return address register $31
to zero when starting a user program it is possible to trace back through any arbi-
trarily nested function calls. The following algorithm, which takes the set of gen-
eral registers plus the program counter as input, produces the values the registers
had at the most recent function call. Of course, only the saved registers plus gp, sp,
ra, and pc can be reconstructed.

m  Scan each instruction starting at the current program counter, going back-
wards. The compiler and linker must guarantee that a jump register to re-
turn address instruction will always precede each text section.

m Ifthe instruction is of the form “move $r, sp” or “addu $r, $sp, $0, then
the register $r may be a frame pointer. The algorithm remembers the
current instruction so it can continue its backward scan.

Then, itscans forward until it sees the “jr ra” instruction that marks the
end of the current function.

Next, it scans backwards searching for an instruction of the form
”move sp, $r” or “addu $sp, $r, $0”. This scan terminates when such an
instruction is found or the branch or jump instruction that marks the
beginning of the last basic block.

If a move or addu instruction of the kind described above was found,
remember the register number of $r as the frame pointer. Otherwise,
$r is not the frame pointer.

The algorithm should return to its original backwards scan starting
with the instruction preceding the one remembered above.

m [If the instruction is a stack pointer decrement, exit the scan.
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m If the instruction is a jump register to return address, exit the scan.

m  If the last examined instruction is a jump register to the return address, it
is the end of the previous function and no stack frame has yet been allocat-
ed for the current function. The address from which the current function
was called is in the return address register minus eight. The other save
registers had their current values when this function was called, so just re-
turn their current values.

m The stack decrement instruction must occur in the first basic block of the
function. The amount of stack decrement is the size of the stack frame.

m  Examine each instruction at increasing program addresses. If any instruc-
tion is a store of save registers $16-$23, $28, $30, or $31 through the frame
pointer (or stack pointer if no frame pointer was used), then record its val-
ue by reading from the stack frame.

m  Stop after examining the instruction in the first branch delay slot encoun-
tered. This marks the end of the first basic block.

m  The frame pointer is the stack pointer value at the time the current func-
tion was called (or the stack pointer if no frame pointer was used) plus the
size of the stack frame.

m  The address from which the function is called is either the return address
register value minus eight or, if the return address was saved on the stack,
the saved value minus eight.

Process Initialization

This section describes the machine state that exec(BA_OS) creates for “infant” pro-
cesses, including argument passing, register usage, stack frame layout, etc. Pro-

gramming language systems use this initial program state to establish a standard
environment for their application programs. For example, a C program begins ex-
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ecution at a function named main, conventionally declared as follows:

extern int main(int argc, char *argv([], char *envp[]);

where argc is a non-negative argument count; argv is an array of argument strings,
with argv[argc]==0; and envp is an array of environment strings, also terminated
by a null pointer.

Although this section does not describe C program initialization, it does provide
the information necessary to implement a call to main or to the entry point for a
program in any other language.

Special Registers

As the architecture defines, two registers control and monitor the processor: the
status register (SR) and the floating-point control and status register (csr). Appli-
cations cannot access the SR directly; they run in user mode. Instructions to read
and write the SR are privileged. No fields in the SR affect user program behavior,
except that the program can assume that coprocessor 1 instructions work as docu-
mented and that the user program executes in user mode with the possibility that
interrupts are enabled. Nothing more should be inferred about the contents of the
SR.

Figure 3-25 lists the initial values of the floating-point control and status register
provided in the architecture

Figure 3-25: Floating—Point Control and Status Register Fields

Field Value Note
C 0 Condition

Bit Exceptions 0 No current exceptions

Trap Enables 0 Floating-point traps not enabled
Sticky Bits 0 No accrued exceptions

RM 0 Round to nearest

The ABI specifies that coprocessor 1 always exists and that coprocessor 1 instruc-
tions (floating-point instructions) work as documented. Programs that directly ex-
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ecute coprocessor 0, 2, or 3 instructions do not conform to the ABI. Individual sys-
tem implementations may use one of these coprocessors under control of the sys-
tem software, not the application.

Process Stack

When a process receives control, its stack holds the arguments and environment
from exec(BA_OS).Figure 3-26 shows the initial process stack.

Figure 3-26: Initial Process Stack

Unspecified High addresses

Information block, including
argument strings
environment strings
auxiliary information

(size varies)
Unspecified
Null auxiliary vector entry
Auxiliary vector

(2-word entries)
0 word
Environment pointers

(one word each)
0 word
Argument pointers

$sp+0 (Argument count words) Low addresses

Argument strings, environment strings, and auxiliary information do not appear
in a specific order with the information block. The system may leave an unspeci-
fied amount of memory between a null auxiliary vector entry and the beginning
of an information block.
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Except as shown below, general integer and floating-point register values are un-
specified at process entry. Consequently, a program that requires specific register
values must set them explicitly during process initialization. It should not rely on
the operating system to set all registers to 0.

The registers listed below have the specified contents at process entry:

$2 A non-zero value specifies a function pointer the application should
register with atexit (BA_OS). If$2 contains zero, no action is required.

$sp  The stack pointer holds the address of the bottom of the stack, which
must be doubleword (8 byte) aligned.

$31  The return address register is set to zero so that programs that search
backward through stack frames (stack backtracing) recognize the last
stack frame, that is, a stack frame with a zero in the saved $31 slot.

Every process has a stack, but the system does not define a fixed stack address.
Furthermore, a program’s stack address can change from one system to another
even from one process invocation to another. Thus the process initialization code
must use the stack address in $sp. Data in the stack segment at addresses below
the stack pointer contain undefined values.

Whereas the argument and environment vectors transmit information from one
application program to another, the auxiliary vector conveys information from the
operating system to the program. This vector is an array of the structures shown
in Figure 3-27, interpreted according to the a_type member.

Figure 3-27: Auxillary Vector

/ typedef struct \

{
int a_type;
union {
long a_val,
void *a_ptr;
void (*a_fcn)();
}a_ un;

} auxv_t;
- /
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Figure 3-28: Auxillary Vector Types, a_type
Name Value a_un
AT_NULL 0 ignored
AT_IGNORE 1 ignored
AT_EXECFD | 2 a_val
AT_PHDR 3 a_ptr
AT_PHENT 4 a_val
AT_PHNUM 5 a_val
AT_PAGESZ | 6 a_val
AT_BASE 7 a_ptr
AT_FLAGS 8 a_val
AT_ENTRY 9 a_ptr
AT_NOTELF | 10 a_val
AT_UID 11 a_val
AT_EUID 12 a_val
AT_GID 13 a_val
AT_EGID 14 a_val

The auxiliary vector types (a_type) shown in Figure 3-28 are explained in the para-

graphs below:
AT _NULL

The auxiliary vector has no fixed length; instead the

a_type member of the last entry has this value.

AT_IGNORE

This type indicates the entry has no meaning. The cor-

responding value of a_un is undefined.

AT_EXECFD As Chapter 5 describes, exec( BA_OS) can pass control to
an interpreter program. When this happens, the system plac-
es either an entry of type AT_EXECFDor type AT_PHDHRnN the
auxiliary vector. The entry for type AT_EXECFDuses the

a val

member to contain a file descriptor open to read the

application program obiject file.
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AT_PHDR Under some conditions, the system creates the memory
image of the application program before passing control
to the interpreter program. When this happens, the
a_ptr member of the AT_PHDRentry tells the interpreter
wheretofindthe programheadertableinthememoryimage.

If the AT_PHDRentry is present, entries of types

AT_PHENT, AT_PHNUMand AT_ENTRYare also present. See
Chapter 5 in both the System V ABI and the processor supple-
ment for more information about the program header table.

AT_PHENT Thea val member of this entry holds the size, in bytes, of
one entry in the program header table to which the AT_PHDR
entry points.

AT_PHNUM Thea_val member of this entry holds the number of entries
in the program header table to which the AT_PHDRentry
points.

AT_PAGESZ If present, the a_val member of this entry gives the system
page size, in bytes. The same information also is available
through sysconf(BA_OS)

AT _BASE The a_ptr member of this entry holds the base address at
which the interpreter program was loaded into memory. See
“Program Header” in the System V ABI for more information
about the base address.

AT_FLAGS If present, the a_val member of this entry holds one-bit
flags. Bits with undefined semantics are set to zero.

AT_ENTRY Thea_ptr member of this entry holds the entry point of the
application program to which the interpreter program should
transfer control.

AT_NOTELF Thea_val member of this entry is zero if the executable is
in ELF format as described in Chapter 4. It is non-zero if the
executable is in MIPS XCOFF format.

AT_UID If present, the a_val = member of this entry holds the actual
user id of the current user.

AT_EUID If present, thea_val member of this entry holds the effective
user id of the current user.

AT_GID If present, the a_val member of this entry holds the actual
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group id of the current user.

AT_EGID If present, the a_val member of this entry holds the effective
group id of the current user.

Other auxiliary vector types are reserved. Currently, no flag definitions exist for
AT_FLAGS. Nonetheless, bits under the 0xff000000 mask are reserved for system
semantics.

In the following example, the stack resides below 0x7fc00000, growing toward
lower addresses. The process receives three arguments:

m cp
m  SIc
m  dst

It also inherits two environment strings. (The example does not show a fully con-
figured execution environment).

m  HOME=/home/dir
m  PATH=/home/dir/bin:/usr/bin:

Its auxiliary vector holds one non-null entry, a file descriptor for the executable
file.

m 13

The initialization sequence preserves the stack pointer’s doubleword (8 byte)
alignment.
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Figure 3-29: Example Process Stack
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Coding Examples

This section discusses example code sequences for basic operations such as calling
functions, accessing static objects, and transferring control from one part of a pro-
gram to another. Previous sections discuss how a program uses the machine or
theoperating system, and specify what a program can or cannot assume about the
execution environment. Unlike the previous material, the information here illus-
trates how operations can be done, not how they must be done.

As before, examples use the ANSI C language. Other programming languages
may use the same conventions displayed below, but failure to do so does not pre-
vent a program from conforming to the ABI. Two main object code models are
available.

Absolute code
Instructions can hold absolute addresses under this model. To ex-
ecute properly, the program must be loaded at a specific virtual
address, making the program absolute addresses coincide with
the process virtual addresses.

Position-independent code
Instructions under this model hold relative addresses, not abso-
lute addresses. Consequently, the code is not tied to a specific load
address, allowing it to execute properly at various positions in vir-
tual memory.

The following sections describe the differences between absolute code and posi-
tion-independent code. Code sequences for the models (when different) appear to-
gether, allowing easier comparison

NOTE

NOTE

3-36

The examples below show code fragments with various simplifications. They are
intended to explain addressing modes, not to show optimal code sequences or to
reproduce compiler output or actual assembler syntax.

When other sections of this document show assembly language code
sequences, they typically show only the absolute versions. Information in this
section explains how position—-independent code would alter the examples.
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Code Model Overview

When the system creates a process image, the executable file portion of the process
has fixed addresses, and the system chooses shared object library virtual addresses
to avoid conflicts with other segments in the process. To maximize text sharing,
shared objects conventionally use position-independent code, in which instruc-
tions contain no absolute addresses. Shared object text segments can be loaded at
various virtual addresses without changing the segment images. Thus multiple
processes can share a single shared object text segment, even though the segment
resides at a different virtual address in each process.

Position-independent code relies on two techniques:

m  Control transfer instructions hold addresses relative to the program
counter (PC). A PC-relative branch or function call computes its destina-
tion address in terms of the current program counter, not relative to any
absolute address. If the target location exceeds the allowable offset for PC-
relative addressing, the program requires an absolute address.

m  When the program requires an absolute address, it computes the desired
value. Instead of embedding absolute addresses in the the instructions,
the compiler generates code to calculate an absolute address during exe-
cution.

Because the processor architecture provides PC-relative call and branch instruc-
tions, compilers can easily satisfy the first condition.

A global offset table provides information for address calculation. Position-indepen-
dent object files (executable and shared object files) have a table in their data seg-
ment that holds addresses. When the system creates the memory image for an ob-
ject file, the table entries are relocated to reflect the absolute virtual addresses as-
signed for an individual process. Because data segments are private for each
process, the table entries can change - whereas text segments do not change be-
cause multiple processes share them.

Due to the 16-bit offset field of load and store instructions, the global offset table is
limited to 16,384 entries (65,536 bytes).

The 16-bit offset fields of instructions require two instructions to load a 32-bit ab-
solute value into a register. In the following code fragments wherever a 32-bit abso

lute value is loaded with a combination of lui and addiu instructions, the proper
correction was made to the high 16 bits before setting the most significant (sign) bit
of the low order 16 bits of the value.
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Position—Independent Function Prologue

This section describes the function prologue for position-independent code. A
function prologue first calculates the address of the global offset table, leaving the
value in register $28, hereafter referred to by its software name gp. This address
is also known as the context pointer. This calculation is a constant offset between
the text and data segments, known at the time the program is linked.

The offset between the start of a function and the global offset table (known be-
cause the global offset table is kept in the data segment) is added to the virtual ad-
dress of the function to derive the virtual address of the global offset table. This
value is maintained in the gp register throughout the function.

The virtual address of a called function is passed to the function in general register
$25, hereafter referred to by its software name t9. All callers of position indepen-
dent functions must place the address of the called function in t9.

Although this section contains examples, an ABI compliant program must use
NOTE register t9 for the context register. The interface to the system library routines
described in Chapter 6 of the System V ABI relies on the address of the called

| procedure being passed in t9.

After calculating the gp, a function allocates the local stack space and saves the gp
on the stack, so it can be restored after subsequent function calls. In other words,
the gp is a caller saved register.

The code in the following figure illustrates a position-independent function pro-
logue. _gp_disp represents the offset between the beginning of the function and
the global offset table.

name:
la gp, _gp_disp
addu gp, gp, 19
addiu sp, sp, —64
SW ap, 32(sp)

Various optimizations are possible in this code example and the others that follow.
For example, the calculation of gp need not be done for a position-independent
function that is strictly local to an object module. However, the simplest, most gen-
eral examples are used to keep the complexity to a minimum.

Data Objects

This section describes data objects with static storage duration. The discussion ex-
cludes stack-resident objects, because programs always compute their virtual ad-
dresses relative to the stack pointer.
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In the MIPS architecture, only load and store instructions access memory. Because
instructions cannot directly hold 32-bit addresses, a program normally computes
an address into a register, using one instruction to load the high 16 bits of the ad-
dress and another instruction to add the low 16 bits of the address.

In actual practice, most data references are performed by a single machine in-
NOTE | struction using a gp relative address into the global data area (the global offset
table and the global data area are both addressed by gp in position—-independent
| code). However, those references are already position—-independent and this

section illustrates the differences between absolute addressing and position in-
dependent addressing.

Figure 3-30: Absolute Load and Store

C Assembly

extern int src; .glopl| src, dst, ptr

extern int dst;

extern int *ptr;

ptr = &dst; Iu t6, dst >> 16
addiu 16, t6, dst & Oxffff
lui t7, ptr >> 16
sw t6, ptr & Oxffff(t7)

*ptr = src; lui t6, src >> 16
Iw t6, src & Oxffff(t6)
lui t7, ptr >> 16
Iw t7, ptr & Oxffff(t7)
sw t6, 0(t7)

Position-independent instructions cannot contain absolute addresses. Instead, in-
structions that reference symbols hold the symbols’ offsets into the global offset ta-
ble. Combining the offset with the global offset table address in gp gives the abso-
lute address of the table entry holding the desired address .
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The offset of data item name is represented as name_got_offin the global offset
NOTE | table. Thisis only a convention and there is no actual assembler support for these
constructs.

Position-Independent Load and Store

C Assembly

extern int src; globl | src, dst, ptr

extern int dst;

extern int *ptr;

ptr = &dst; I t7, dst_got_off(gp)
Iw t6, ptr_got_off(gp)
nop
sw t7, O(t6)

*ptr = src; Iw] t7, src_got_off(gp)
nop
Iw t7, O(t7)
Iw t6, ptr_got_off(gp)
nop
lw t6, O(t6)
nop
S t7, O(t6)

Function Calls

Programs use the jump and link instruction, jal, to make direct function calls.
Since the jal instruction provides 28 bits of address and the program counter con-
tributes the four most significant bits, direct function calls are limited to the current
256 MByte chunk of the address space as defined by the four most significant bits
of pc.
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Figure 3-31: Absolute Di rect Function Ca Il

C Assembly
extern void function(); jal function
function(); nop

Calls to functions outside the 256 MByte range and other indirect function calls are
done by computing the address of the called function into a register and using the
jump and link register, jalr , instruction.

Figure 3-32: Absolute Indirect Function Call

C Assembly
extern void (*ptr)();
extern void name();
ptr = name; lui t6, name >> 16
gddiu 6, t6, name & Oxffff
Ui t7, ptr >> 16
sw t6, ptr & Oxffff(t7)
(*ptn0; lui t6, ptr >> 16
addiu t6, t6, ptr & Oxffff

[a—

Ir ra, t6
oo

Normally, the data area for the variable ptr is kept in the global data area and
NOTE is accessed relative to register gp. However, this example illustrates the differ-
ence between absolute data references and position—independent data refer-
| ences.

Calling position independent code functions is always done with the jalr instruc-
tion. The global offset table holds the absolute addresses of all position indepen-
dent functions.
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Figure 3-33: Position-Independent Function Calls

C Assembly

extern void (*ptr)(); .global | ptr, name

extern void name();

name(); lw t9, name_got_off(gp)
nop
jalr t9
nop
Iw gp, 24(sp)
nop

ptr = name; Iw t7, name_got_off(gp)
Iw t6, ptr_got_off(gp)
nop
sw t7,0(t6) (*ptn)();
Iw t7, ptr_got_off(gp)
nop
Iw t9, 0(t7)
nop
jalr t9
nop
Iw ap, 24(sp)
nop

gp must be restored on return because called position independent functions can
change it. gp is saved in the stack frame in the prologue of position—-independent

NOTE ;
code functions.

Branching

Programs use branch instructions to control execution flow. As defined by the
architecture, branch instructions hold a PC-relative value with a 256 KByte range,
allowing a jump to locations up to 128 KBytes away in either direction.
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Figure 3-34: Branch Instruction, All Models

C Assembly
label: $32:
goto label: b $32
nop

C switch statements provide multiway selection. When case labels of a switch
statement satisfy grouping constraints, the compiler implements the selection with
an address table. The address table is placed in a .rdata section; this so the linker
can properly relocate the entries in the address table. Figures 3-36 and 3-37 use the
following conventions to hide irrelevant details:

] The selection expression resides in register t7;
[ case label constants begin at zero;
[ case labels, default , and the address table use assembly names

.Lcase i, .Ldef ,and .Ltab, respectively.

Address table entries for absolute code contain virtual addresses; the selection
code extracts the value of an entry and jumps to that address. Position-indepen-
dent table entries hold offsets; the selection code compute the absolute address of
a destination.
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Figure 3-35: Absolute switch Code

C Assembly
switch (j) sltiu at, t7,4
{ beq at, zero, .Ldef
case 0: sl t7,17,2
lui t6, .Ltab >> 16
case 2: addiu 16, .Ltab & Oxffff
addu t6, t6, t7
case 3: Iw t7, 0(t6)
nop
default: jr t7
nop
} .Ltab: .word .Lcase0
.word .Ldef
.word .Lcase2
.word .Lcase3
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Figure 3-36: Position-independent switch Code

C Assembly
switch (j) sltiu at, t7,4
{ beq at, zero, .Ldef
case 0: sl 17,17, 2
Iw at, .Ltab_got_off(gp)
case 2: nop
addu at, at, t7
case 3: Iw 16, O(at)
nop
default: addu 16, t6, gp
jr 6
} nop
.rdata
.Ltab: .word .Lcase0_gp_off
.word .Ldef_gp_off
.word .Lcase2_gp_off
.word .Lcase3_gp_off
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C Stack Frame

Figure 3-37 shows the C stack frame organization.lt conforms to the standard stack
frame with designated roles for unspecified areas in standard frame.

Figure 3-37: C Stack Frame

Base Offset Contents Frame

local space: High addresses
automatic variables

compiler scratch space: Current
temporaries
register save area
$sp 16 outgoing arguments 5

outgoing argument 4

$sp 0 outgoing argument 1 Low addresses

A C stack frame does not normally change size during execution. The exception is
dynamically allocated stack memory, discussed below. By convention, a function
allocates automatic (local) variables in the top of its frame and references them as
positive offsets from sp. Its incoming arguments reside in the previous frame, ref-
erenced as positive offsets from sp plus the size of the stack frame.

Variable Argument List

Previous sections describe the rules for passing arguments. Unfortunately, some
otherwise portable C programs depend on other argument passing schemes, im-
plicitly assuming that 1) all arguments reside on the stack, and 2) arguments ap-
pear in increasing order on the stack. Programs that make these assumptions never
have been portable, but they have worked on many machines. They do not work
on MIPS based systems because some arguments can reside in registers. Portable
C programs should use the facilities defined in the header files <stdarg.h> or
<varargs.h> to deal with variable argument lists (on MIPS and other machines as
well). A program implicitly uses <stdarg.h> when it specifies a prototype declara-
tion with an ellipsis (“...”) in the argument list. No prototype or a prototype with
no ellipsis causes <varargs.h> to be used.

When a function uses <stdarg.h>, the compiler modifies the argument passing
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rules described above. In the calling function, the compiler passes the first 4 32-bit
words of arguments in registers $4, $5, $6, and $7, regardless of data type. In par-
ticular, this means that floats and doubles are passed in the integer register. In the
called function, the compiler arranges that the argument registers are saved on the
stack in the locations reserved for incoming arguments. This allows the called
function to reference all incoming arguments from consecutive locations on the
stack.

When a function uses <varargs.h>, the situation is somewhat different. The calling
function uses the argument passing rules exactly as described in the the section on
argument passing rules. However, the called function allocates 32 bytes immedi-
ately adjacent to the space for incoming arguments in which to save incoming
floating-point argument values.

If va_list appears as the first argument, it spills the $f12/$f13, and $f14/$f15 register
pairs at -24 and -32 bytes respectively, relative to the increasing argument area. If
va_alist  appears as the second argument, it spills the $f14/%$f15 register pair at
-24 bytes relative to the incoming argument area.
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Figure 3-38: Called Function Stack Frame

Base Offset

Contents

Frame

unspecified

variable size

+16

(if present)
incoming arguments
passed in stack frame

old $sp +0

space for incoming
arguments 1-4

High addresses

Previous

16 bytes reserved
8 bytes to spill $f12/$f13
8 bytes to spill $f14/$f15

locals and
temporaries

general register
save area

floating-point
register save area

$sp +0

argument
build area

Current

Low addresses

The 30 most-significant bits of the va_list type locate the next address in the incom-
ing arguments to process with the va_arg macro. This address is calculated by the
rules given below. The two least significant bits encode whether the va_arg macro
will read floating-point values from the incoming argument area or from the float-
ing-point save area described in the previous paragraph.

The va_start() macro in <varargs.h> encodes the following states in the two least
significant bits of the va_list type:

m  |Iftheva list

1 from the va_list

m  Iftheva_list

gument was type double, va_start

pointer points to the first argument, va_start
pointer, leaving it completely misaligned.

subtracts

pointer points to the second argument, and the first ar-

pointer, leaving it 2-byte aligned.

m  For all other cases, va_start

subtracts 2 from the va_list

leaves the low-order bits of the va_list

pointer set to zero (leaving it 4-byte aligned).
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The va_start() macro in <varargs.h> requires built-in compiler support to deter-
mine which position in the argument list the va_alist parameter appears.

The va_start()macro in <stdarg.h> always sets the two least significant bits of the
va_list type to zero.

If the second argument of the va_arg() macro is not the type double or the va_list
pointer is 4-byte aligned, it zeroes the two least significant bits of the va_list pointer
in calculating the next argument to return. It advances the value of the va_list
pointer by the size of the type passed to va_arg. This leaves the va_list pointer 4-
byte aligned.

If the second argument to va_arg() is type double and the va_list pointer’s least sig-
nificant bit is 1, it returns the value of the $f12/$f13 register pair saved 32 bytes be-
low the incoming argument. The address of the save area must be calculated by
subtracting 31 from the value of the va_list pointer. The va_arg macro advances
va_list pointer by 7 leaving it 2-byte aligned.

If the second argument to va_arg() is type double and the va_list pointer’s value is
2-byte aligned, it returns the value of the $f14/$f15 register pair saved 16 bytes be-
low the incoming argument area. The address of the save area must be calculated
by subtracting -30 from the value of the va_list pointer. The va_arg macro advanc-
es va_list pointer by 10 leaving it 4-byte aligned.

Dynamic Allocation of Stack Space

The C language does not require dynamic stack allocation within a stack frame.
Frames are allocated dynamically on the program stack, depending on program
execution. The architecture, standard calling sequence, and stack frame support
dynamic allocation for programming languages that require it. Thus languages
that need dynamic stack frame sizes can call C functions and vice versa.

When a function requires dynamically allocated stack space it manifests a frame
pointer on entry to the function. The frame pointer is kept in a callee-saved register
so that itis not changed across subsequent function calls. Dynamic stack allocation
requires the following steps.

1. On function entry, the function adjusts the stack pointer by the size of the
static stack frame. The frame pointer is then set to this initial sp value and
is used for referencing the static elements within the stack frame, perform-
ing the normal function of the stack pointer.
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NOTE

Stack frames are doubleword (8 byte) aligned; dynamic allocation pre-
serves this property. Thus, the program rounds (up) the desired byte
count to a multiple of 8.

To allocate dynamic stack space, the program decreases the stack pointer
by the rounded byte count, increasing its frame size. Atthis point, the new
space resides between the register save area and the argument build area
and the argument build area effectively moves down.

Standard calling sequence rules require that any frame pointer manifest within a
function be initialized within the first basic block of the function. In other words,
it must be set before any branches or calls.

Even in the presence of signals, dynamic allocation is *‘safe.”” If a signal interrupts
allocation, one of three things can happen.

The signal handler can return. The process resumes the dynamic alloca-
tion from the point of interruption.

The signal handler can execute a non-local goto, or longjmp  [see set-
jmp (BA_LIB)]. This resets the process to a new context in a previous stack
frame, automatically discarding the dynamic allocation.

The process can terminate.

Regardless of when the signal arrives during dynamic allocation, the result is a
consistent (though possibly dead) process.

Existing stack objects reside at fixed offsets from the frame pointer; stack heap al-
location does not move them. No special code is needed to free dynamically allo-
cated stack memory. The function epilogue resets the stack pointer and removes
the entire stack frame, including the heap, from the stack. Naturally, a program
should not reference heap objects after they have gone out of scope.
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ELF Header

Machine Information

For file identification in e_ident[], MIPS requires the values listed in Figure 4-1.

‘Figure 4—1: MIPS Identification, e_ident[]

Position Value
e_ident[El_CLASS] HLFCLASS32
e_ident[El_DATA] HLFDATA2MSB

Processor identification resides in the ELF header e_machine member and must
have the value 8, defined as the name EM_MIPS.

The ELF header e_flags member holds bit flags associated with the file, as listed
in Figure 4-2.

Figure 4—2: Processor—Specific Flags, e_flags

Name Value
EF_MIPS_NOREORDER | 0x00000001
EF_MIPS_PIC 0x00000002
EF_MIPS_CPIC 0x00000004
EF_MIPS_ARCH 0xf0000000

EF_MIPS_NOREORDER This bit is asserted when at least one .noreor-
der directive in an assembly language source
contributes to the object module.

EF_MIPS_PIC This bit is asserted when the file contains posi-
tion-independent code that can be relocated in
memory.

EF_MIPS CPIC This bit is asserted when the file contains code

that follows standard calling sequence rules for
calling position-independent code. The code in
this file is not necessarily position independent.
The EF_MIPS_PIC and EF_MIPS_CPIC flags

OBJECT FILES 4-1



4-2

EF_MIPS_ARCH

must be mutually exclusive.

The integer value formed by these four bits iden-
tify extensions to the basic MIPS I architecture.
An ABI compliant file must have the value zero in
these four bits. Non-zero values indicate the ob-
ject file or executable contains program text that
uses architectural extensions to the MIPS | archi-
tecture.
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Sections

Figure 4-3 lists the MIPS-defined special section index which is provided in addi-
tion to the standard special section indexes.

Figure 4-3: Special Section Indexes

Name

Value

SHN_MIPS_ACOMMON 0xff00 or (SHN_LOPROC + 0)

SHN_MIPS_TEXT
SHN_MIPS_DATA

0xffo1 or (SHN_LOPROC + 1)
0xff02 or (SHN_LOPROC + 2)

SHN_MIPS_ SCOMMON 0xff03 or (SHN_LOPROC + 3)
SHN_MIPS_SUNDEFINED 0xff04 or (SHN_LOPROC + 4)

SHN_MIPS_ACOMMON

SHN_MIPS_TEXT
SHN_MIPS_DATA

SHN_MIPS_SCOMMON

OBJECT FILES

Symbols defined relative to this section are com-
mon symbols which are defined and allocated. The
st_value member of such a symbol contains the vir-
tual address for that symbol. If the section must be
relocated, the alignment indicated by the virtual
address is preserved, up to modulo 65,536. Symbols
found in shared objects with section index
SHN_COMMON are not allocated in the shared ob-
ject. The dynamic linker must allocate space for
SHN_COMMON symbols that do not resolve to a
defined symbol.

Symbols defined relative to these two sections are
only present after a program has been rewritten by
the pixie code profiling program. Such rewritten
programs are not ABI-compliant. Symbols defined
relative to these two sections will never occur in an
ABI-compliant program.

Symbols defined relative to this section are com-
mon symbols which can be placed in the global
data area (are gp-addressable). See "Global Data
Area" in this chapter. This section only occurs in re-
locatable object files.
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SHN_MIPS_SUNDEFINED Undefined symbols with this special section index

in the st_shndx field can be placed in the global
data area (gp-addressable). See "Global Data
Area" in this chapter. This section only occurs in
relocatable object files.

Figure 4-4 lists the MIPS-defined section types in addition to the standard section
types.

Figure 4—4: Section Types, sh_type

Name

SHT_MIPS_LIBLIST

Value
Dx70000000 or (SHT_LOPROC + 0)

SHT_MIPS_CONFLICT | 0x70000002 or (SHT_LOPROC + 2)

SHT_MIPS_GPTAB
SHT_MIPS_UCODE
SHT_MIPS_DEBUG

0x70000003 or (SHT_LOPROC + 3)
0x70000004 or (SHT_LOPROC + 4)
0x70000005 or (SHT_LOPROC + 5)

SHT_MIPS_REGINFO 0x70000006 or (SHT_LOPROC + 6)

4-4

SHT_MIPS_LIBLIST

The section contains information about the set of dy-
namic shared object libraries used when statically
linking a program. Each entry contains information
such as the library name, timestamp, and version. See
"Quickstart" in Chapter 5 for details.

SHT_MIPS_CONFLICT The section contains a list of symbols in an executable

SHT_MIPS_GPTAB

whose definitions conflict with shared-object defined
symbols. See "Quickstart" in Chapter 5 for details.

The section contains the global pointer table. The global
pointer table includes a list of possible global data
area sizes. The list allows the linker to provide the
user with information on the optimal size criteria to
use for gp register relative addressing. See "Global
Data Area" below for details.
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SHT_MIPS_UCODE This section type is reserved and the contents are un-
specified. The section contents can be ignored.

SHT_MIPS_DEBUG The sction contains debug information specific to
MIPS. An ABI-compliant application does not need
to have a section of this type.

SHT_MIPS_REGINFO The section contains information regarding register
usage information for the object file. See Register In-
formation for details.

A section header sh_flags member holds 1-bit flags that describe the attributes
of the section. Inaddition to the values defined in the System V ABI, Figure 4-5 lists
the MIPS-defined flag.

Figure 4-5: Section Attribute Flags, sh_flags

Name Value
SHF_MIPS_GPREL 0x10000000

SHF_MIPS_GPREL The section contains data that must be part of the global
data area during program execution. Data in this area
is addressable with a gp relative address. Any section
with the SHF_MIPS_GPREL attribute must have a sec-
tion header index of one of the .gptab special sections in
the sh_link member of its section header table entry.
See "Global Data Area" below for details.

The static linker does not guarantee that a section with
the SHF_MIPS_GPRELattribute will remain in the glo-
bal data area after static linking.

Figure 4-6 lists the MIPS-defined section header sh_link and sh_info members
interpretation for the MIPS-specific section types.
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Figure 4-6: sh_link

sh_type

and sh_info interpretation

sh_link

sh_info

SHT_MIPS_LIBLIST

The section header index of
the string table used by en-
tries in this section.

The number of entries in
this section.

SHT_MIPS_GPTAB

not used

The section header index
of the SHF_ALLOC +
SHF_WRITE section. See
" Global Data Area" in this
chapter.

Special Sections

MIPS defines several additional special sections. Figure 4-7 lists their types and
corresponding attributes.
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Figure 4-7:

Special Sections

Name Type Attributes

text SHT_PROGBITS BHF_ALLOC + SHF_EXECINSTR

.sdata SHT_PROGBITS SHF_ALLOC + SHF_WRITE +\
SHF_MIPS_GPREL

.Sbss $HT_NOBITS SHF_ALLOC + SHF _WRITE +\
SHF_MIPS_GPREL

dit4 SHT_PROGBITS SHF_ALLOC + SHF_WRITE +\
SHF_MIPS_GPREL

1it8 SHT_PROGBITS SHF_ALLOC + SHF_WRITE +\
SHF_MIPS_GPREL

reginfo  SHT_MIPS_REGINFO SHF_ALLOC

liblist  SHT| MIPS_LIBLIST SHF |ALLOC

.conflict SHT_CONFLICT SHF_ALLOC

.gptab SHT _MIPS GPTAB |none

.got SHT_PROGBITS SHF_ALLOC + SHF_WRITE +\
SHF_MIPS_GPREL

.ucode $HT_MIPS _UCODE | none

.mdebug SHT_MIPS_DEBUG | none

.dynamic §HT_DYNAMIC SHF_ALLOC

rel.dyn SHT_REL SHF_ALLOC

1it8

| flict

NOTEl A MIPS ABI compliant system must support the .sdata , .sbss , .lit4

’

,.reginfo  ,and.gptab sections. A MIPS ABIcompliant system must

recognize, but may choose to ignore the contents of the .liblistor.con-

sections. However, if either of these optional sections is supported,

both must be supported.

text

.Ssdata

OBJECT FILES

This section contains only executable instructions. The first two
instructions immediately preceding the first function in the sec-
tion must be a jump to return address instruction followed by a
nop. The stack traceback algorithm, described in Chapter 3, de-
pends on this.

This section holds initialized short data that contribute to the

program memory image. See "Global Data Area" below for de-
tails.
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.sbss

lit4

1it8

.reginfo

Jliblist

.conflict

.gptab

.ucode

4-8

This section holds uninitialized short data that contribute to the
program memory image. By definition, the system initializes
the data with zeros when the program begins to run. See "Glo-
bal Data Area" below for details.

This section holds 4 byte read-only literals that contribute to the
program memory image. Its purpose is to provide a list of
unique 4-byte literals used by a program. See "Global Data
Area" below for details. Although this section has the
SHF_WRITEattribute, it is not expected to be written. Placing
this section in the data segment mandates the SHF WRITE at-
tribute.

This section holds 8 byte read-only literals that contribute to the
program memory image. Its purpose is to provide a list of
unique 8-byte literals used by a program. See "Global Data
Area" below for details. Although this section has the
SHF_WRITEattribute, it is not expected to be written. Placing
this section in the data segment mandates the SHF_WRITE at-
tribute.

This section provides information on the program register us-
age to the system. See "Register Information” below for details.

This section contains information on each of the libraries used at
static link time as described in "Quickstart" in Chapter 5.

This section provides additional dynamic linking information
about symbols in an executable file that conflict with symbols
defined in the dynamic shared libraries with which the file is
linked. See "Quickstart" in Chapter 5 for details.

This section contains a global pointer table. The global pointer
table is described in "Global Data Area" in this chapter. The sec-
tion is named .gptab.sbss,.gptab.sdata, gptab.bss,
or.gptab.data  depending on which data section the particu-
lar .gptab refers.

This section name is reserved and the contents of this type of
section are unspecified. The section contents can be ignored
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.mdebug

.got

.dynamic

.rel.dyn

NOTE

OBJECT FILES

This section contains symbol table information as emitted by the
MIPS compilers. Its content is described in Chapter 10 of the
MIPS Assembly Language Programmer’s Guide, order number
ASM-01-DOC, (Copyright O 1989, MIPS Computer Systems,
Inc.). The information in this section is dependent on the loca-
tion of other sections in the file; if an object is relocated, the sec-
tion must be updated. Discard this section if an object file is re-
located and the ABI compliant system does not update the sec-
tion.

This section holds the global offset table. See "Coding Exam-
ples" in Chapter 3 and " Global Offset Table" in Chapter 5 for
more information.

This is the same as the generic ABI section of the same type, but
the MIPS-specific version does not include the SHF_WRITEat-
tribute.

This relocation section contains run-time entries for the .data
and .sdata sections. See "Relocations" in Chapter 5 for more
information.

Sections that contribute to a loadable program segment must not contain over-
lapping virtual addresses.
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Symbol Table
Symbol Values

If an executable or shared object contains a reference to a function defined in one
of its associated shared objects, the symbol table section for that file will contain an
entry for that symbol. The st_ shndx member of that symbol table entry contains
SHN_UNDEFThis signals to the dynamic linker that the symbol definition for that
function is not contained in the executable file. If there is a stub for that symbol in
the executable file and the st_value member for the symbol table entry is non-

zero, the value will contain the virtual address of the first instruction of that pro-
cedure’s stub. Otherwise, the st value = member contains zero. This stub calls
the dynamic linker at runtime for lazy text evaluation. See "Function Addresses"
in Chapter 5 for details.
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Figure 4-8: Global Pointer Table

typedef union {

struct {
EIf32_Word gt _current_g_value;
EIf32_Word gt_unused;

} ot_header;

struct {
EIf32_Word gt_g_value;
EIf32_Word gt _bytes;

} gt_entry;

} EIf32_gptab;

gt_header.gt_current_g_value
This member is the size criterion actually used for this object
file. Data items of this size or smaller are referenced with gp rel-
ative addressing and reside in a SHF_MIPS_GPRELsection.

gt_header.gt_unused
This member is not used in the first entry of the EIf32_gptab
array.

gt_entry.gt_g_value
This member is a hypothetical size criterion value.

gt_entry.gt_bytes
This member indicates the length of the global data area if the
corresponding gt_entry.gt_g value were used.

The first element of the ELF_32_gptab array is alway of type gt_header ; this
entry must always exist. Additional elements of the array are of type gt_entry

Each of the gt_entry.gt_g_value fields is the size of an actual data item en-
countered during compilation or assembly, including zkm.separate size
criteria results in a overall size for the global data area. The various entries are
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Register Information

The compilers and assembler collect information on the registers used by the code
in the object file. This information is communicated to the operating system kernel

using a .reginfo

section. The operating system kernel can use this information

to decide what registers it does not need to save or which coprocessors the pro-
gram uses. The section also contains a field which specifies the initial value for the
gp register, based on the final location of the global data area in memory.

Figure 4-9: Register Information Structure

typedef struct {
EIf32_Word ri_gprmask;;
EIf32_Word ri_cprmask([4];

EIf32_SWord ri_gp_value;
} ELF_Reglnfo;

ri_gprmas Kk

ri_cprmask

ri_gp_valu

4-14

e

This member contains a bit-mask of general registers used by
the program. Each set bit indicates a general integer register
used by the program. Each clear bit indicates a general integer
register not used by the program. For instance, bit 31 set indi-
cates register $31 is used by the program; bit 27 clear indicates
register $27 is not used by the program.

This member contains the bit-mask of co-processor registers
used by the program. The MIPS RISC architecture supports up
to four co-processors, each with 32 registers. Each array ele-
ment corresponds to one set of co-processor registers. Each of
the bits within the element corresponds to individual register
in the co-processor register set. The 32 bits of the words corre-
spond to the 32 registers, with bit number 31 corresponding to
register 31, bit number 30 to register 30, etc. Set bits indicate
the corresponding register is used by the program; clear bits
indicate the program does not use the corresponding register.

This member contains the gp register value. In relocatable ob-
ject files it is used for relocation of the R_MIPS_GPREland
R_MIPS_LITERAL relocation types.
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Only co—processor 1 can be used by AB/-compliant programs. This means that
NOTE| only the ri_cprmask [1] array element can have a non—zero value.
ri_cpr-mask|[0] , ri_cprmask[2] , and ri_cprmask[3] must all
be zero in an AB/I-compliant program.
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Relocation

Relocation Types

Relocation entries describe how to alter the following instruction and data fields
shown in Figure 4-10; bit numbers appear in the lower box corners.

Figure 4-10: Relocatable Fields

31 15 half16 0
" word32 o
" - targ26 .
31 15 hil6 0
a1 1s lo16 0
a1 15 rel16 0
a1 15 lit16 0
31 15 pe 0

Calculations below assume the actions are transforming a relocatable file into ei-
ther an executable or a shared object file. Conceptually, the linker merges one or
more relocatable files to form the output. It first determines how to combine and
locate the input files; then it updates the symbol values, and finally it performs the
relocation.
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Relocations applied to executable or shared object files are similar and accomplish
the same result. Descriptions below use the following notation.

A Represents the addend used to compute the value of the relocatable
field.
AHL Identifies another type of addend used to compute the value of the relo-

catable field. See the note below for more detail.

P Represents the place (section offset or address) of the storage unit being
relocated (computed using r_offset)

S Represents the value of the symbol whose index resides in the relocation
entry, unless the the symbol is STB_LOCAL and is of type
STT_SECTIONIn which case S represents the original sh_addr minus
the final sh_addr .

G Represents the offset into the global offset table at which the address of
the relocation entry symbol resides during execution. See ‘“‘Coding Ex-
amples” in Chapter 3 and ‘““Global Offset Table’ in Chapter 5 for more
information.

GP Represents the final gp value to be used for the relocatable, executable,
or shared object file being produced.

GPO Represents the gp value used to create the relocatable object.
EA Represents the effective address of the symbol prior to relocation.
L Represents the .lit4 or .lit8 literal table offset. Prior to relocation

the addend field of a literal reference contains the offset into the global
data area. During relocation, each literal section from each contributing
file is merged and sorted, after which duplicate entries are removed and
the section compressed, leaving only unique entries. The relocation fac-
tor L is the mapping from the old offset of the original gp to the value
of gp used in the final file.

A relocation entry r_offset  value designates the offset or virtual address of the
first byte of the affected storage unit. The relocation type specifies which bits to
change and how to calculate their values. Because MIPS uses only EIf32_Rel  re-
location entries, the relocated field holds the addend.

The AHLaddend is a composite computed from the addends of two consecutive re-
location entries. Each relocation type of R_MIPS_HI16 must have an associated
R_MIPS_LO16entry immediately following it in the list of relocations.
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These relocation entries are always processed as a pair and both addend fields
contribute to the AHL addend. If AHI and ALO are the addends from the

paired R_MIPS_HI16 and R_MIPS_LO16entries, then the addend AHL is com-
puted as (AHI << 16) + (short)ALO. R_MIPS_LO16 entries without an
R_MIPS_HI16 entry immediately preceding are orphaned and the previously de-
fined R_MIPS_HI16 is used for computing the addend.

The field names in Table 4-11 tell whether the relocation type checks for over-
NOTE| flow. A calculated relocation value can be larger than the intended field, and a re-
location type can verify (V) the value fits or truncate (T) the result. As an example,
| V-half16 means the computed value cannot have significant non—zero bits out-
side the half16 field.
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Figure 4-11: Relocation Types

Name Value Field Symbol Calculation
R_MIPS_NONE 0 | none local none
R_MIPS_16 1 |V-halfl6 external S +|sign—extend(A)
1 |V-halfl6 Ipcal S + sign—extend(A)
R_MIPS_32 2 |T—word32 |external S+ A
2 |T-word32 [local S+ A
R_MIPS_REL32 3 | T-word32 |external A-EA+S
R_MIPS_REL32 3 | T-word32 |local Al-EA+S
R_MIPS_26 4 |T-targ26 Ipcal (A<<2) |\
(P & 0xf00O00000) + S) >>2
4 |T-targ26 external (sigh—extend(A<2)+S)>>2
R_MIPS_HI16 5 [T-hil6 external ((AHL + S) —\
(short)(AHL + S)) >> 16
5 |T-hil6 ocal ((AHL + S) -\
(short)(AHL + S)) >> 16
5 |V-hil6 | gp_disp (AHL + GP — P) — (short) \
(AHL + GP —P)) >> 16
R_MIPS_LO16 6 |T-lol6 external AHL +S
6 |T-lol6 ocal AHL + S
6 |[V-lol6 | gp_disp AHL+GP-P +4
R_MIPS_GPREL16 | 7 | V-rell6é |external sign-extend(A)+ S + GP
7 |V-rell6 local sign—extend(A)+S+GP0-GP
R_MIPS_LITERAL |8 |V-litl6 Idcal sign—extend(A) + L
R_MIPS_GOT16 9 | V—rell6 |external G
9 |V—rellé local see below
R_MIPS_PC16 10 | V—-pcl6 external sign-extend(A) +S-P
R_MIPS_CALL16 11 |V-rell6 external G
R_MIPS_GPREL32 | 12| T-word32 | local A+S+GP0-GP
R_MIPS_GOTHI16 | 21 | T-hi16 external (G f (short)G) >> 16 + A
R_MIPS_GOTLO16 | 22| T-lol6 external G & Oxffff
R_MIPS_CALLHI16 | 30 [T-hil6 external (G - (short)G) >>16 + A
R_MIPS_CALLLO16| 31| T-lol6 external G & Oxffff

In the Symbol column in the table above, local refers to a symbol referenced by the
symbol table index in the relocation entry STB_LOCAL/STT_SECTION Other-
wise, the relocation is considered an external relocation. See below for _gp_disp

relocations.

The R_MIPS_REL32relocation type is the only relocation performed by the dy-
namic linker. The value EA used by the dynamic linker to relocate an
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R_MIPS_REL32relocation depends on itsr_symndx value. If the relocation en-
try r_symndx is less than DT_MIPS_GOTSYMhe value of EAis the symbol
st_valuep lusdisplacement. Otherwise, the value of EAis the value in the GOT
entry corresponding to the relocation entry r_symndx.  The correspondence be-
tween the GOT and the dynamic symbol table is described in the "Global Offset Ta-
ble" section in Chapter 5.

Ifan R_MIPS_GOT16refers to a locally defined symbol, then the relocation is done
differently than if it refers to an external symbol. In the local case, the
R_MIPS_GOT16must be followed immediately withaR_MIPS_LO16relocation.
The AHLaddend is extracted and the section in which the referenced data item re-
sides is determined (requiring that all sections in an object module have unique ad-
dresses and not overlap). From this address the final address of the data item is
calculated. If necessary, a global offset table entry is created to hold the high 16
bits of this address (an existing entry is used when possible). The rel16 field is re-
placed by the offset of this entry in the global offset table. The 1016 field in the fol-
lowing R_MIPS_LO16 relocation is replaced by the low 16 bits of the actual des-
tination address. This is meant for local data references in position-independent
code so that only one global offset table entry is necessary for every 64 KBytes of
local data.

The first instance of R_MIPS_GOT16R_MIPS_CALL16, R_MIPS_GOT_HI16,
R_MIPS_CALL_HI16, R_MIPS_GOT_LO16, orR_MIPS_CALL LO16. Relo-
cations cause the link editor to build a global offset table if one has not already been
built.

The symbol name _gp_disp isreserved. Only R_MIPS_HI16 and
R_MIPS_LO16 relocations are permitted with _gp_disp . These relocation en-
tries must appear consecutively in the relocation section and they must reference
consecutive relocation area addresses.

R_MIPS_CALL16, R_MIPS_CALL_HI16, and R_MIPS_CALL_LO16 reloca-
tion entries load function addresses from the global offset table and indicate that
the dynamic linker can perform lazy binding. See "Global Offset Table" in Chapter
5.
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Program Loading

As the system creates or augments a process image, it logically copies a file seg-
ment to a virtual memory segment. When and if the system physically reads the
file depends on the program’s execution behavior, system load, etc. A process
does not require a physical page unless it references a logical page during execu-
tion. Processes commonly leave many pages unreferenced; therefore delaying
physical reads frequently obviates them, improving system performance. To ob-
tain this efficiency in practice, executable and shared object files must have seg-
ment images whose virtual addresses are zero, modulo the file system block size.

Virtual addresses and file offsets for MIPS segments are congruent modulo 64
KByte (0x10000) or larger powers of 2. Because 64 KBytes is the maximum page
size, the files are suitable for paging regardless of physical page size.

Figure 5-1: Example Executable File

File Offset File Virtual Address
0 Text Segment
ELF header
Program header table
Other information 0x400100
0x100 .
0x2be00 bytes Ox42beff
0x2bf00 Data segment 0x43bfo0
Ox4€0s .bytes 0x440cff

0x30d00 Other information
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Figure 5-2: Program Header Segments

Member Text Data

p_type PT LOAD PT_LOAD

p_offset 0 0x2bf00

p_vaddr 400100 Dx43bf00

p_paddr unspecified  ungpecified

p_filesz 0x2bf00 0x4e00

p_memsz 0x2bf00 0x5e24

p_flags AF_R+PF_X PF_R+PF_W+PF_X
p_align 0x10000 0x10000

Because the page size can be larger than the alignment restriction of a segment file
offset, up to four file pages can hold impure text or data (depending on page size
and file system block size).

m  The first text page contains the ELF header, the program header table, and
other information.

m  The last text page can hold a copy of the beginning of data.
m  The first data page can have a copy of the end of text.

m  The last data page can contain file information not relevant to the running
process.

Logically, the system enforces the memory permissions as if each segment were

complete and separate; segment addresses are adjusted to ensure each logical page
in the address space has a single set of permissions. In the example in Figure 5-1,
the file region holding the end of text and the beginning of data is mapped twice:
once at one virtual address for text and once at a different virtual address for data.

The end of the data segment requires special handling for uninitialized data which
the system defines to begin with zero values. Thus if the last data page of a file in-
cludes information not in the logical memory page, the extraneous data must be
set to zero, rather than the unknown contents of the executable file. “Impurities”
in the other three pages are not logically part of the process image; whether the sys-
tem expunges them is unspecified.

There is one aspect of segment loading that differs between executable files and
shared objects. Executable file segments typically contain absolute code [see

“Coding Examples™ in Chapter 3]. To let the process execute correctly, the seg-
ments must reside at the virtual addresses used to build the executable file, with
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the system using the p_vaddr values unchanged as virtual addresses.

Shared object segments typically contain position-independent code, allowing a
segment virtual address to change from one process to another without invalidat-
ing execution behavior. Though the system chooses virtual addresses for individ-
ual processes, it maintains the relative positions of the segments. Because position-
independent code uses relative addressing between segments, the difference be-
tween virtual addresses in memory must match the difference between virtual ad-

dresses in the file. The following table shows possible shared object virtual ad-
dress assignments for several processes, illustrating constant relative positioning.
The table also illustrates the base address computations.

Figure 5-3: Example Shared Object Segment Addresses

Source Text Data Base Address
File 0x200 0x2a400 0x0

Process 1 | 0x50000200 0x5002a400 0x50000000
Process 2 | 0x50010200 0x5003a400 0x50010000
Process 3 | 0x60020200 0x6004a400 0x60020000
Process 4 | 0x60030200 0x6005a400 0x60030000

In addition to maintaining the relative positionsof the segments, the system must
NOTE| also ensure that relocations occur in 64 KByte increments; position—-independent

code relies on this property.

By convention, no more than one segment will occupy addresses in the same
NOTE] chunk of memory, modulo 256 KBytes.
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Program Header

There is one program header type specific to this supplement.

Figure 5-4. MIPS Specific Segment Types, p_type

Name Value
PT_MIPS REGINFO | 0x70000000

PT_MIPS _REGINFO Specifies register usage information for the executable or
shared object; it cannot occur more than once in afile. Its
presence is mandatory and it must precede any loadable
segment entry. Itidentifies one .reginfo type section.
See Register Information" in Chapter 4 for more informa-
tion.

Segment Contents

Figures 5-5 and 5-6 below illustrate typical segment contents for a MIPS executable
or shared object. The actual order and membership of sections within a segment
may alter the examples below.
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Figure 5-5: Text Segment

.reginfo

.dynami

Jiblist

.rel.dyn

.conflict

.dynstr

.dynsym

.hash

.rodata

text

Figure 5-6: Data Segment

.got

lit4

1it8

.sdata

.data

.sbss

.bss
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DT_MIPS_IVERSION
This element holds an index into the object file string
table. The version string is a series of version strings sep-
arated by colons (:). Anindex value of zero means no ver-
sion string was specified.

DT_MIPS_FLAGS This element holds a set of 1-bit flags. Flag definitions
appear below.

DT_MIPS_BASE_ADDRESS

This member holds the base address of the segment. That
is, it holds the virtual address of the segment as if the the
segment were actually loaded at the addressed specified
at static link time. It can be adjusted when the operating
system kernel actually maps segments. Itis used to adjust
pointers based on the difference between the static link
time value and the actual address.

DT_MIPS_CONFLICT
This member holds the address of the .conflict sec-
tion.

DT_MIPS_LIBLIST
This member holds address of the .liblist section.

DT_MIPS_LOCAL_GOTNO
This member holds the number of local global offset table
entries.

DT_MIPS_CONFLICTNO
This member holds the number of entries in the

.conflict section. This field is mandatory if thereis a
.conflict section.
DT_PLTGOT This member holds the address of the .got section.

DT_MIPS_SYMTABNO
This member holds the number of entries in the .dynsym
section.

DT_MIPS_LIBLISTNO
This member holds the number of entries in the
iblist section.

DT_MIPS_UNREFEXTNO
This member holds the index into the dynamic symbol
table which is the entry of the first external symbol that is
not referenced within the same object.
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DT_MIPS_GOTSYM  This member holds the index of the first dynamic symbol
table entry that corresponds to an entry in the global off-
set table. See "Global Offset Table" in this chapter.

DT_MIPS_HIPAGENO
This member holds the number of page table entries in the
global offset table. A page table entry here refers to a 64
Kb chunk of data space. This member is used by profiling
tools and is optional.

DT_RPATH This member optionally appears in a shared object. Ifitis
present in a shared object at static link time, it is propa-
gated to the final executable’s DT_RPATH.

DT_DEBUG This member is specifically disallowed.

DT_MIPS_RLD_MAP
This member is used by debugging. It contains the
address of a 32-bit word in the .data section which is
supplied by the compilation environment. The word’s
contents are not specified and programs using this value
are not ABI - compliant.

Figure 5-8: Dynamic section, DT_MIPS_FLAGS

Name Value Meaning

RHF_NONE 0x00000000 | none

RHF_QUICKSTART 0x00000001 use shortcut pointers
RHF_NOTPOT 0x00000002 | hash size not power of two
RHF_NO_LIBRARY_REPLACEMENT 0x00000004; ignore LD_LIBRARY_PATH

The RHF_NO_LIBRARY_REPLACEMEM®g directs the dynamic linker to ignore
the LD_LIBRARY_PATHenvironment variable when searching for shared objects.

Shared Object Dependencies

The System V ABI defines the default library search path to be /usr/lib ; MIPS de-
fines the default library search path to be /lib:/usr/lib:/usr/lib/cmplrs/
cc.

Global Offset Table

In general, position-independent code cannot contain absolute virtual addresses.
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Global offset tables (or GOTSs) hold absolute addresses in private data, making the
addresses available without compromising position-independence and sharability
of a program text. A program references its global offset table using position-in-
dependent addressing and extracts absolute values, thus redirecting position-in-
dependent references to absolute locations.

The global offset table is split into two logically separate subtables: locals and ex-
ternals. Local entries reside in the first part of the global offset table. The value of
the dynamic tag DT_MIPS_LOCAL_GOTN#Bolds the number of local global offset
table entries. These entries only require relocation if they occur in a shared object
and the shared object memory load address differs from the virtual address of the
loadable segments of the shared object. As with defined external entries in the glo-
bal offset table, these local entries contain actual addresses.

External entries reside in the second part of the global offset table. Each entry in
the external section corresponds to an entry in the global offset table mapped part
of the .dynsym section (see "Symbols" below for a definition). The first symbol
in the .dynsym section corresponds to the first word of the global offset table; the
second symbol corresponds to the second word, and so on. Each word in the ex-
ternal entry part of the global offset table contains the actual address for its corre-
sponding symbol. The external entries for defined symbols must contain actual
addresses. If an entry corresponds to an undefined symbol and the global offset
table entry contains a zero, the entry must be resolved by the dynamic linker, even
if the dynamic linker is performing a quickstart. See "Quickstart” below for more
information.

The following table details the various possibilities for the initial state of the global
offset table mapped dynamic symbol table section and the global part of the global
offset table.
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Figure 5-9: Initial State, global GOT and .dynsym

Section Type st_value GOT Entry Comments
SHN_UNDEF| STT_FUNC 0 0/Qs 1
SHN_UNDEF| STT_FUNC | stubaddr stub Sgdress/ 2
SHN_UNDEF .
SHN_COMMON any 0/alignment 0/QS

stub address/
all others STT_FUNC address address 2
all others any address address 3

QS stands for the Quickstart value of the symbol.

Comments:

1: had relocations related to taking the function’s address
2: only had call related relocations defined STT_FUNC

3: non-STT_FUNC defined globals

After the system creates memory segments for a loadable object file, the dynamic
linker can process the relocation entries. The only relocation entries remaining are
type R_MIPS_REL32referring to data containing addresses. The dynamic linker
determines the associated symbol (or section) values, calculates their absolute ad-
dresses, and sets the proper values. Although the absolute addresses may be un-
known when the link editor builds an object file, the dynamic linker knows the ad-
dresses of all memory segments and can find the correct symbols, thus calculating
the absolute addresses contained therein.

The dynamic linker relocates the global offset table by first adding the difference

between the base where the shared object is loaded and the value of the dynamic
tag DT_MIPS_BASE_ADDRES all local global offset table entries. Next, the glo-
bal GOT entries are relocated. For each global GOT entry the following relocation
is performed:
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Figure 5-10: Global Offset Table Relocation Algorithm

Section Type st_value GOTEntry  Relocation
SHN_UNDEF| STT_FUNC 0 0/Qs 1
SHN_UNDEF| STT_FUNC stub addr stub addr 2
SHN_UNDEF| STT_FUNC stub addr I=stub addr 3
SHN_UNDEF

SHN_COMMQ ,\?II others any 0/QSs 1

all others | STT_FUNC | address stubaddress|

I= address*
all others all others address address 1

* Stub address must be in this executable and can only be applied the first
time the GOT is modified.

Relocation:

1: resolve immediately or use Quickstart value

2: add run-time displacement to GOT entry

3: set GOT entry to stub address plus run-time displacement

Certain optimizations are possible with information from Quickstart. An ABI-
compliant system performing such optimizations guarantees that the values of the
GOT entries are the same as if the dynamic linker performed the relocation algo-
rithm described in Figure 5-10.

If a program requires direct access to the absolute address of a symbol, it uses the
appropriate global offset table entry. Because the executable file and shared ob-
jects have separate global offset tables, the address of a symbol can appear in sev-
eral tables. The dynamic linker processes all necessary relocations before giving
control to any code in the process image, thus ensuring the absolute addresses are
available during execution.

The zero entry in the global offset table is reserved to hold the address of the entry
point in the dynamic linker to call when lazy resolving text symbols. The dynamic
linker must always initialize this entry regardless of whether lazy binding is or is
not enabled.

The system can choose different memory segment addresses for the same shared
object in different programs; it can even choose different library addresses for dif-
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ferent executions of the same program. Nonetheless, memory segments do not
change addresses once the process image is established. As long as a process exists,
its memory segments reside at fixed virtual addresses.

Calling Position—Independent Functions

The global offset table is used to hold addresses of position-independent functions
as well as data addresses. It is not possible to resolve function calls from one exe-
cutable file or shared object to another at static link time, so all of the function ad-
dress entries in the global offset table are normally resolved at execution time. The
dynamic linker then resolves all of these undefined relocation entries at run-time.
Through the use of specially constructed pieces of code known as stubs, this run-
time resolution can be be deferred through a technique known as " binding, lazy
binding".

Using this technique, the link editor (or a combination of the compiler, assembler,
and link editor) builds a stub for each called function, and allocates a global offset
table entry that initially points to the stub. Because of the normal calling sequence
for position-independent code, the call ends up invoking the stub the first time the
call is made.

Figure 5-11: Sample Stub Code

stub_xyz: .
Iw t9, O(gp)
move t7, ra
jal t9

li t8, .dynsym_index # branch delay slot

In the example in Figure 5-11, the stub code loads register t9 with an entry from
the global offset table which contains a well-known entry point in the dynamic
linker; it also loads register t8 with the index into the .dynsym section of the ref-
erenced external. The code must save register ra in register t7 and transfer con-
trol to the dynamic linker.

The dynamic linker determines the correct address for the actual called function
and replaces the address of the stub in the global offset table with the address of
the function.

Most undefined text references can be handled by lazy text evaluation except
when the address of a function is relocated using relocations of type
R_MIPS_CALL16 or R_MIPS_26.
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The LD_BIND_NOWnvironment variable can also change dynamic linking behav-
ior. Ifits value is non-null, the dynamic linker evaluates all symbol table entries of
type STT_FUNGCreplacing their stub addresses in the global offset table with the
actual address of the referenced function.

Lazy binding generally improves overall application performance because
NOTE] unused symbols do not incur the dynamic linking overhead. Nevertheless,
two situations make lazy binding undesirable for some applications. First, the
| initial reference to a shared object function takes longer than subsequent
calls, because the dynamic linker intercepts the call to resolve the symbol.
Some applications cannot tolerate this unpredictability. Second, if an error
occurs and the dynamic linker cannot resolve the symbol, the dynamic linker
terminates the program. Under lazy binding, this might occur at arbitrary
times. Once again, some applications cannot tolerate this unpredictability. By
turning off lazy binding, the dynamic linker forces the failure to occur during
process initialization, before the application receives control.

Symbols

All externally visible symbols, both defined and undefined, must be hashed into
the hash table.

Undefined symbols of type STT_FUNCwhich have been referenced only by
R_MIPS_CALL16and R_MIPS_26 relocations, can contain non-zero values in the
their st_value field, denoting the stub address used for lazy evaluation for this
symbol. The run-time linker uses this to reset the global offset table entry for this
external to its stub address when unlinking a shared object. All other undefined
symbols must contain zero in their st_value fields.

The dynamic symbol table, like all ELF symbol tables, is divided into local and glo-
bal parts. The global part of the dynamic symbol table is further divided into two
parts: symbols that do not have GOT entries associated with them and symbols
that do have GOT entries associated with them. The part of the dynamic symbol
table with GOT entries is called the "global offset table mapped" part or "GOT
mapped" part. Symbols with GOT entries have a one-to-one mapping with the
global part of the GOT.

The value of the dynamic tag DT_MIPS_GOTSYM the index of the first symbol
with a global offset table entry in the dynamic symbol table.

Relocations

There may be only one dynamic relocation section to resolve addresses in data. It
must be called .rel.dyn . Executables can contain normal relocation sections in
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addition to a dynamic relocation section. The normal relocation sections may con-
tain resolutions for any absolute values in the main program. The dynamic linker
does not resolve these or relocate the main program.

As noted previously, only R_MIPS_REL32relocation entries are supported in the
dynamic relocation section.

Because sufficient information is available in the .dynamic section, the GOT has
no relocation information. The relocation algorithm for the GOT is described
above.

The entries in the dynamic relocation section must be ordered by increasing
r_symndx value.

Ordering

To take advantage of Quickstart functionality, the .dynsym and .rel.dyn sec-
tions must obey ordering constraints. The GOT-mapped portion of the .dynsym
section must be ordered on increasing valuesinthest_value field. This requires
thatthe .got section have the same order, since it must correspond to the .dynsym
section.

The.rel.dyn  section must have all local entries first, followed by the external en-
tries. Within these sub-sections, the entries must be ordered by symbol index.
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Quickstart

The MIPS supplement to the ABI defines two sections which are useful for faster
start-up of programs when the programs have been linked with dynamic shared
objects. The group of structures defined in these sections allow the dynamic linker
to operate more efficiently than when these sections are not present. These addi-
tional sections are also used for more complete dynamic shared object version con-
trol.

An ABI compliant system can ignore the sections defined here, but if it supports
NOTH one of these sections, it must support both of them. If you relink or relocate the
object file on secondary storage and cannot process these sections, you must

| delete them.

Shared Object List

A shared object list section is an array of structures that contain information about
the various dynamic shared objects used to statically link this object file. Each sep-
arate shared object used generates one EIf32_Lib  array element. The shared ob-
ject list is used for more complete shared object version control.

Figure 5-12: Shared Object Information Structure

typedef struct {
EIf32_Word |_name;
EIf32_Word |_time_stamp;
EIf32_Word |_checksum;
EIf32_Word |_version;
EIf32_Word |_flags;

} EIf32_Lib;

|_name This member specifies the name of a shared object. Its value

is a string table index. This name can be a trailing compo-
nent of the path to be used with RPATH + LD_LIBPATH or
a name containing ‘/’s, which is relative to ‘.’, or it can be a
full pathname.

|_time_stamp This member’s value is a 32 bit time stamp. It can be com-
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bined with the |_checksum value and the |_version
string to form an unique id for this shared object.

|_checksum This member’s value is the sum of all externally visible sym-
bol’s string names and common sizes.

|_version This member specifies the interface version. Its value is a
string table index. The interface version is a single string
containing no colons (:). Itis compared against a colon sep-
arated string of versions pointed to by a dynamic section
entry of the shared object. Shared objects with matching
names are considered incompatible if the interface version
strings are deemed incompatible. An index value of zero
means no version string is specified.

flags This is a set of 1 bit flags. Flag definitions appear below.

Figure 5-13: Library Flags, | flags
Name Value Meaning

LL_EXACT_MATCH 0x00000001 | require exact match
LL_IGNORE_INT_VER | 0x00000002 | ignore interface version

LL_EXACT_MATEI At run-time use a unique id composed of the
|_time_stamp ,|_checksum ,andl_version fieldsto
demand that the run-time dynamic shared library match
exactly the shared library used at static link time.

LL_IGNORE_INT_VER
At run-time, ignore any version incompatibilities
between the dynamic shared library and the library used
at static link time.

Normally, if neither LL_EXACT_MATCldor LL_IGNORE_INT_VERDbits are set, the
dynamic linker requires that the version of the dynamic shared library match at
least one of the colon separated version strings indexed by the |_version  string
table index.
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Conflict Section

The .conflict section is an array of indexes into the .dynsym section. Each in-
dex identifies a symbol whose attributes conflict with a shared object on which it
depends, either in type or size such that this definition will preempt the shared ob-
ject’s definition. The dependent shared object is identified at static link time.

Figure 5-14: Conflict Section

typedef EIf32_Addr EIf32_Conflict;
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System Library

Additional Entry Points

The following routines are included in the libsys library to provide entry points
for the required source-level interfaces listed in the System V ABI. A description
and syntax summary for each function follows the table.

Figure 6-1: libsys Additional Required Entry Points

_fxstat _Ixstat _xmknod _Xstat nuname _nuname

int _ fxstat (int, int, struct stat *);

The semantics of this function are identical to those of the fstat (BA_
OS) function described in the System V Interface Definition, Third Edition.
Its only difference is that it requires an extra first argument whose value
must be 2.

int _Ixstat (int, char *, struct stat *);

The semantics of this function are identical to those of the Istat (BA__
0OS) function described in the System V Interface Definition, Third Edition.
Its only difference is that it requires an extra first argument whose value
must be 2.

int _nuname (struct utsname *);

The semantics and syntax of this function are identical to those of the
uname(BA_0S) function described in the System V Interface Definition,-
Third Edition. The symbol _nuname is also available with the same se-
mantics.

int_xmknod(int, char *, mode_t, dev_t);

The semantics and syntax of this function are identical to those of the
mknod(BA__0S) function described in the System V Interface Definition,-
Third Edition. Its only difference is that it requires an extra first argu-
ment whose value must be 2.

int _xstat(int, char *, struct stat *);

The semantics of this function are identical to those of the
stat (BA_OS) function described in the System V Interface Definition,

6-1 LIBRARIES



Third Edition. Its only difference is that it requires an extra first argu-
ment whose value must be 2.

Support Routines

Besides operating system services, libsys contains the following processor-specific
support routines.

Figure 6-2: libsys Support Routines

sbrk

_sbrk _sqrt. s _sqrt d _test and _set _flush_cache

The routines listed below employ the standard calling sequence described in
Chapter 3, "Function Calling Sequence."

char *sbrk(int incr);

This function adds incr bytes to the break value  and changes the al-
located space accordingly. Incr can be negative, in which case the
amount of allocated space is decreased. The break value is the address
of the first allocation beyond the end of the data segment. The amount
of allocated space increases as the break value increases. Newly allocat-
ed space is set to zero. If, however, the same memory is reallocated to
the same process, its contents are undefined. Upon successful comple-
tion, sbrk returns the old break value. Otherwise, it returns -1 and sets
errno toindicate the error. The symbol _sbrk isalso available with the
same semantics. NOTE: mixing sbrk & malloc is hazardous to your
program’s health.

float _sqrt_s(float v)

This function computes /v using single-precision floating point arith-
metic and returns the resulting value. The result is rounded as if calcu-
lated to infinite precision and then rounded to single-precision accord-
ing to the current rounding modes specified by the floating point con-
trol/status register. If the value is -0, the resultis-0. _sqrt_ s can
trigger the floating point exceptions Invalid Operation when v is less
than 0 or Inexact.

double _sqrt_d(double v)

This function computes /v using double-precision floating point arith-
metic and returns the resulting value. The result is rounded as if calcu-
lated to infinite precision and then rounded to double-precision accord-
ing to the current rounding modes specified by the floating point con-
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trol/status register. If the value is -0, the resultis-0. _sqrt_d can
trigger the floating point exceptions Invalid Operation when v is less
than 0 or Inexact.

int _test and_set(int *p, int v)
This function performs an atomic test and set operation on the integer
pointed to by p. It effectively performs the following operations, but
with a guarantee that no other process executing on the system can in-
terrupt the operation.

temp = *p;
*p = V,
return(temp);

int _flush_cache(char *addr, int nbytes, int cache)
This function flushes the contents of the associated cache(s) for user
program addresses in the range addr to addr+nbytes—1 . Cache
can be:

ICACHE- Flush only the instruction cache.
DCACHE Flush only the data cache.
BCACHE- Flush both instruction and data cache.

These definitions are in the include file <sys/cachectl.h >. The
function returns zero when no errors are detected and returns -1 other-
wise, with the error cause indicated in errno . On error, the two possi-
ble errno values are either EINVAL, indicating an invalid value for the
cache parameter, or EFAULT, indicating some part or all of the address
range specified is not accessable.

Global Data Symbols

The libsys library requires that some global external 