Watcom C Library Reference

for QNX

Version 1.8

Uien Watcom

Notice of Copyright

Copyright O 2002-2008 the Open Watcom Contributors. Portions Copyright O 1984-2002 Sybase, Inc.
and its subsidiaries. All rights reserved.

Any part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of anyone.

For more information please visit http://www.openwatcom.org/

ISBN 1-55094-053-8

Preface

This manual describes the Watcom C Library. It includes the Standard C Library (as defined in the ANSI
C Standard) plus many additional library routines which make application development for personal
computers much easier.

Copies of this documentation may be ordered from:
QNX Software Systems Ltd.
175 Terence Matthews Crescent
Kanata, Ontario
CANADA K2M 1w8

Phone: 613-591-0931
Fax: 613-591-3579

Acknowledgements

This book was produced with the Watcom GML electronic publishing system, a software tool developed by
WATCOM. In thissystem, writers use an ASCII text editor to create source files containing text annotated
with tags. These tags label the structural elements of the document, such as chapters, sections, paragraphs,
and lists. The Watcom GML software, which runs on a variety of operating systems, interprets the tags to
format the text into aform such as you see here. Writers can produce output for a variety of printers,
including laser printers, using separately specified layout directives for such things as font selection,
column width and height, number of columns, etc. The result istype-set quality copy containing integrated
text and graphics.

July, 1997.

Trademarks Used in this Manual

IBM is aregistered trademark of International Business Machines Corp.
Intel isaregistered trademark of Intel Corp.

Microsoft, MS, MS-DOS, Windows, Win32, Win32s, Windows NT and Windows 2000 are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.
UNIX isaregistered trademark of The Open Group.
ONX isaregistered trademark of QNX Software Systems Ltd.

WATCOM is atrademark of Sybase, Inc. and its subsidiaries.

Table of

Contents

Watcom C Library REFEIENCEoouiiieeeee et b st

L C LIDIary OVEIVIEBWoocuiieiiiieiiieeeet ettt ettt b e bbbt s bt e bbb et nenn e nnenes

1.1 Classes of Functions

1.1.1 Character Manipulation FUNCLIONScceoireirieirieereneeseese e
1.1.2 Wide Character Manipulation FUNCLIONSccoeiinenninrceee e
1.1.3 Multibyte Character Manipulation FUNCLIONSccccvevevereereeieereeese e
1.1.4 Memory Manipulation FUNCLIONSccccceieveeieeieieeeeese s
1.1.5 String Manipulation FUNCLIONSccccvveiicieenecese st
1.1.6 Wide String Manipulation FUNCLIONSccooiiiiininenie e
1.1.7 Multibyte String Manipulation FUNCLIONSccooiriiiienere e

1.1.8 Conversion Functions ...

1.1.9 Memory AllOCation FUNCLIONScccoirieirieirieiirieiseeesieese s

1.1.10 Heap Functions
1.1.11 Math Functions
1.1.12 Searching Functions ...
1.1.13 Time Functions

1.1.14 Variable-length Argument LiStS ...cccvvvveieieeeeieeee e

1.1.15 Stream 1/O Functions ..
1.1.16 Wide Character Stream

IO FUNCLIONS ...

1.1.17 Process Primitive FUNCHIONScocoueiiiiiie ettt st s

1.1.18 Process Environment ..
1.1.19 Directory Functions

1.1.20 Operating System 1/O FUNCLIONScccovrireririeineeenieene e
1.1.21 File Manipul@tion FUNCLIONSccoiriririeinieenieesieerie e

1.1.22 Console /O Functions
1.1.23 POSIX Redltime Timer

FUNCLIONS ..ottt st

1.1.24 POSIX Shared Memory FUNCLIONSccccoviveieviesieeseeseeeseee e sne e
1.1.25 POSIX Termina Control FUNCLIONScccovrvinininsiees e
1.1.26 System Datahase FUNCLIONScccccviieiicee et
1.1.27 Miscellaneous QNX FUNCLIONSccceeieiiiceeie ettt
1.1.28 QNX LOW-l€VEl FUNCLIONSccoecvieiieeee ettt
1.1.29 Intel 80x86 Architecture-Specific FUNCLIONSccccoverireneneneneeee e
1.1.30 Intel Pentium Multimedia Extension FUNCLIONSccoovvvvinenenicneneeeeee
1.1.31 Miscellaneous FUNCLIONSccceouieieitieieiieciee ettt sttt

1.2 Header Files ...ooovveeeeiieeeeeeeee

1.2.1 Header FileSin JUSI/INCIUAEccoeeriiiiiiiceceee s
1.2.2 Header Filesin /USI/INCIUAE/SYSccevveveeiecieeeecese st
1.2.3 Header Files Provided for Compatibilitycccocevveiivieienieie e

1.3 Global Datacccoceevevveeeerieens
1.4 The TZ Environment Variable

2 Graphics Libraryccooeeveveiencenccnenens
2.1 Graphics FUNCLionsc.ccccvee.

2.2 Graphics Adaptersc.cccveennene

2.3 Classes of Graphics Functions

2.3.1 Environment Functions .

2.3.2 Coordinate System FUNCLIONScceveiriiiiese s e seee e snens

2.3.3 Attribute Functions
2.3.4 Drawing Functions
2.3.5 Text Functions
2.3.6 Graphics Text Functions

O©OoO~N~NOOO WWw =

WWWNDNNDNNNNNNDNDNNMNNNNMNNREPEPRPEPRPERPERPERPEPRPERPERPRERPRERE
WROO0OUIWWkRrRPRRPRPPOOOOOQOQOWOWONOOGIUO AP WDNEODO

37
37
37
38
38
39
40
40
41
41

Table of Contents

2.3.7 Image

Manipulation FUNCLIONSc.couiiiieireesieee e

2.3.8 Font Manipulation FUNCLIONScccooiririiiiiniese e

2.3.9 Presentation GraphiCS FUNCLIONScovirieirieinieinieesees e
2.3.9.1 Display FUNCLIONSccooiiiiiriieieieesieese e

2.3.9.2 ANAlYZE FUNCLIONSouoiiiiiiiciieee e

2.3.9.3 ULility FUNCLIONSoveviiiirieiriecriesteesieee et

2.4 GraphiCS HEAE! FIIES ..ottt r e st sne e en

3 Library Functions and M
abort

ACTOS i

AOF, WEOF e e e
0TI/ o SRS
0]] (o SR SRSR

1S <2 (o o [

cgets

Vi

42
42
43

RRES

45
48
49
50
51
52
53

56
58
59
60
61
62
63

65
66
67
68
69
70
71
72
73
74
76
77
79
80
82

85
86
88
89
90
92
93
94
95
96
97
98

Table of Contents

ClOSBAIT ...t bbb et sttt 99
11010 07 10 0= SRS 100
e o111 0] S ST 101
CONETOITP et e 103
(00 TPV OUPRPROPN 105
0101 o 106
ot o] 1)« 107
oo 11 | RSO 108
(0= | PSSP R PP PRURPR 109
(007 o | USSR 112
ClIME FUNCLIONS ...ttt e enea 113
EIAY oo ettt ans 115
e [1== (o1 o 1 o TSP 116
IFHIME e e s 117
01 7= T 118
CQISADIE e e 119
B0 1 oL o £ o 121
IV bbb et b e r e 122
B0 1055 o1 010 1T=.= = S 123
011 OSSPSR 124
(011 2SS 126
ECVE, ECOVE, WECVL .oiiuiiiiie ittt sttt sttt saaesnne e 128
_ellipse, _€@lipse W, ElliPSE WXY ..cooiiiiireie e 130
_BNADIE e e 132
<) PSS 134
EXEC... FUNCHIONS ..ottt e e s 135
=2 T S 138
S OSSP 140
L2 o SRRSO PRSP 141
_eXPANA FUNCLIONS ...ttt s e 142
A e e be e 144
FCIOSE ettt a 145
FCLOSBAIL ... e e 146
fOVE, FOVL, WIECVL e 147
fdopen, _fdopen, _WIOPEN ... 149
FECIBAMEXCEPL ..o 150
_ fediSADIEEXCEPL ... 151
_ feenabl@EXCEPL ..o s 152
L= =2 (= 1Y RS 153
FEgELEXCEPLIIAT ..oeieeeeee e 154
=0 = 1010 0o VPR 155
LLE 8010 (ST o TSR 156
FBOF oottt st et reereneas 157
FEIAISEEXCEAPL ..vieetireet bbb 158
LS ST 159
LSS (<)Y R 160
LLES =0 (e = o u] = 161
FESELTOUNG ...ttt 162
LSS oo o S 163
FEUPTAIEENY ...t s 164
L0 TSRS 165
LSS 166

vii

Table of Contents

FOBLC, TOBIWE . 167
fgetchar, _fgetchar, fQetWChar ..o 168
FOBLPOS .ottt er e 169
FOELS, FOBIWS e 170
_FIEBEIOMSDIN ..ot 171
FHEIENGEN oo 172
FILENAME_MAX .ot 173
FITENO oo 174
11 TS 175
_Floodfill, _fIOOOfITT_W .ooveeeeiieietceee s 176
FIOOK ettt 177
FIUSNAIL . bbb 178
FIMOA e e e 179
_FMSDINTOIEEE ..t 180
FOPEN, _WFOPEN .o 181
fOPEN_S, _WIOPEN_S . 183
FP_OFF e 186
FP_SEG ..ottt 187
L 010 = S T SRR 188
FPIESEL e 189
FRriNtf, FWPEINET ..o s 190
fRrintf_S, FWPITNIF S .o 191
FPULC, FPULWE ..t 193
fputchar, _fputchar, _fRUtWChEr ... 194
FPULS, FPULWS ..ottt 195
L= ST 196
FrEE FUNCLIONS ..o 197
== S 199
freopen, _WITEOPEN ..ot e 200
freopen_S, _WITEOPEN S ...ociiiiiiiee e e 201
L2 o SRRSO 203
fSCaNf, FIWSCANT ... e 204
fscanf S, FWSCANT_S ..o s 205
FOBEK ittt es 207
FSEEPOS ottt bbb 209
_FSOPEN, WISOPEN ..o 210
FSEBL e 212
L S 215
FLOIL e s 217
FHIMIE e 218
CFUHPEIN b 219
FWEAR e b 220
L= 221
OCVE, _OCVE, _WOCVE ..o e e 222
_QELACHIVEDAGE ...veeeeeeeie ettt b e 223
CQELAICINTO vt e bbb 224
B0 (=1 (o o 226
[0 (o <. A1 oSSR 227
01 ot o R 228
(01 (o 7= 0 1= A1 o S 229
OELCNE .. e eb e 230
B (= (o [T o o | o H ST 231

Table of Contents

[0S (ot 120 OSSPSR 232
0 (= (o o] Lo SO USS 233
_Qetcurrentposition, _getcurrentPOSItiON_ Wccooeereenerenenese s 234
GEICWA ..ottt b et 235
OELENV, _WOBLENV ...t s sne e ne s 236
[0S 0V TP 238
B0 (= 1 S 240
B (=1 00111 o 241
_QELOEEXTEXIENE .oivviciee it 242
e L= 0 (S qAY < ol o] S SRR 243
_getimage, _getimage W, _getimage WXYoocooererieneneereeeeeeeeee s 244
_OEHHNESEYIE . e 246
_QEIPNYSCOOTA ..ottt 247
_QEtPIXEl, _QEIPIXEI W e 248
_QEIPIOLACLION ..ottt 249
OELS, _GEIWS .ot e e e 250
[0 KSR 251
B0 (=102 74 (o] o 252
e L= L= (ol 1 £ o PSPPSR 253
_QELEXIEXTENT ..ot nare s 254
B0 (= 1= qx 010 = o] o USSR 256
_QELEEXESEEINGS ...eveeveeeieestesieseeie ettt st b e e et e e ne e 257
_QEHEXEWINTOW ...ttt 258
_QEIVIAEOCONTIT vttt 259
_getviewcoord, _getviewcoord W, _getViewCoOrd_WXYc..cccoeereerererereenennes 262
_OEIVISUBIPAGE ..eveeeeereeie ettt et 263
o (= 0471 o (071 T o PSS 264
OMEME FUNCLIONS ...o.veieiecicce ettt st s nre s 265
B0 5= L1 TSRS 267
_OITEXE, _OITEXE W ottt st 268
NBITOC ... 270
_heapChK FUNCLIONS ..ot 271
_NEAPENEDIE ... e 273
_heapgrow FUNCLIONS ..o 274
_heapmin FUNCLIONScoiiiiiice e 275
_NEaPRSEt FUNCLIONS ...coviiiieciec et 276
_heapshrink FUNCLIONSccuoieeeececcceee st nnea 278
_heapWalk FUNCLIONScccoieieieececcce e sne 279
PFFEE e 282
0177 0 | OSSR 283
T gTo =00 7= 0o | = USRS 284
_imagesize, imagesize W, iMageSiZE WXY ...ccccecerereruereereereeseeesenesenaesaenns 285
TMBXBIS ...ttt ettt he b e b b e seenean 286
TMBXAIV .ot ettt be st e st st e b et e ne et e ne e e neenennas 287
1]« SO STTRPRPRP 288
1] oo SRS 289
] 290
TNEBBB ...t n e 291
TNEBBOX v.vveeeeerererereeret et s etttk b bbb ena 292
TNEBB ..ttt bbbt 294
TNEBBX ..ttt sttt ettt sttt b et b e bbb e bt 295
] L SRR 296

Table of Contents

1SAINUM, ISWAINUIM ...ttt bbb s sbe e 297
iSAlpha, ISWaAIPNE ..o e 298
ISASCii, __ 1SASCIl, ISWBSCH veverveeereeiirieierieirieesiee st 299
iShlank, ISWBIANKc.coiiieicieice e 300
(o 1 BT 1 302
ISCSYM, __ISCSYM, _ ISWCSYIM .ttt 303
iscsymf, iscsymf, ISWCSYME ..c.eoeeeiciceeeceeece e 305
ISAIGIL, ISWAIGIT .eveeeee et 307
FSFINITE vttt 308
ISQraph, ISWOIPN ..o e 309
1S OSSP 310
ISIOWEY, ISWIOWET ...ttt bbb st sen 311
1S 7= 0 TR 312
1S 10 1 7= SRS 313
FSPITNE, FSWPITNTE et 314
FSPUNCE, ISWPUINCE ...ttt st sttt 315
ISSPACE, ISWSPBCE ...evereereriereeseestesteseeeeeeseeseesessesessessessessestesaeseessenseseensenseneenens 317
I SUPPEY, ISWUPPET ..eveeeeeteeteriestestesieseestes e stesessseaesseneesessessessessessessesseseeseessansessnns 319
RS0/ o= TS 320
ISXAIQIL, ISWXAIGIT ..eveeieieieieeiec et eaae e e 322
] (o= T N (o= R 1 (0. USRS 323
KBhit, KBRIt oo e 325
[ADS ettt e e e 326
[AEXD vt 327
0 S 328
1 T 329
B 1101 (o I 10T (o PSS 331
[TADS .ttt 333
o OSSP 334
[OCAIECONY ... e bbb bbb s 335
[0CAITIME FUNCLIONS ...t s 338
TOCK ettt b e b e sne e 340
[0CKING, _TOCKING ...ecviieeiiiieeeieestee e 341
[OQ ettt b e 343
[OGLO et bbbt 344
[OO2 ettt 345
oo 14 o 346
L1) 347

01 TSP 348
[SBAICH . bbb 349
[SEEK .ttt bbbt e et 351
10 o7= M 1 (o 7= T 1) (o SRS 354
o= T (o 7= T L 0 SRS 356
0T T R 2= 1 T 358
_makepath, _WmaKepathccooriiiiiii e 360
MBIIOC FUNCLIONS ..ottt st 362
071 1 ST 364
0= PSSRSOV P PPN 366
B 101 0O (o 10 367
B oo 15 (]SSP 368
B 1o ex o a1 = NSRS 369
B 1003 (0] - - NSRS 371

Table of Contents

MBIEN e 372
R 1 0o T 0:s o o | SRS 375
CSIINCNE, _WESNCNT ..ttt et s b e n e sne e s r e sneesanes 377
_SIMNEXIC, _WECSNEXICooviiiiiieeiiceesie e e 379
0101510 1SS 381
MBSIOWES S ettt ettt 382
MBEOWE .ot 384
115 117 Y/ RS 386
MEMCCPY, FMEMCCPY ..ooveeee e s s s 387
memchr, _fmemchr, WMemChr ..o 388
memcmp, _fmememp, WMEMCIMP ..o e 389
memcpy, _fMemcpy, WIMEMCPYccoeririrenerere e 390
Memicmp, _FMEMICMP ..o 391
101 101007 PO ORI 392
memmove, _fmemmove, WMEMIMOVEcccceeerereresierinseeneseeseeseeeeneeessenees 393
memset, fmMemSset, WMEMSELcccoviririere e 394
101 TSSO SSE PSPPI 395
INKAIT e 396
VK P e 398
001G (< 1] o U P SRS 399
INKEIMIE <.ttt 401
1070 o | SRR 403
0010110 = - OSSR 404
_IMOVELD, _MOVELIO W ..ot e 405
M_PBCKSSOW .ttt bbb e 406
M_PBCKSSIVD .ttt 408
T 0= (U S o 410
T 7= o o | o SR 412
T 7= o o [0 SR 413
M PAAASD . 414
T 0720 (0 1S OSSP 415
T 07='0 (0 LU o SRR 416
M_PBAAUSIV ...ttt 417
M_PBAOW .ttt b 418
LT 0= o TSSO 419
LT 0= 0| o PSSR 420
B T oo 1070 1= o T 421
B T oo 12701 o 422
ML PCMPEOW evieiiieiieesteesieesieesibeesseessesessesssaesbeessaesbeessaesseesbaesseessessnseenseesasens 423
N PCMIPGLD e e e 424
B 01 oo 1016 o | (o RSSO 425
I POMIPGLW ettt ettt sttt st e e s bbb e b saeeseesaeesbeeneesaeenesaeeresanans 426
M PMAAOWE ..ot 427
TN PMUINW L e 428
TN PMUIIW bbb 429
T 00 TSRS 430
T = 1 o SR 431
M PSHAI e e e 432
LT 0= 1 o SRR 433
ML PSHG eeeeeeeee eee eeeeaeeeeeaea 434
ML PSHIW bbb e 435
ML PSHWI e bbb e 436

Xi

Table of Contents

LT 0= = o PO UOUPSS 437
LT 0= = oSO 438
I 0 = TP 439
I STAWE ettt ettt b et b et bbbt e 440
MLPSIT s 441
MPSIT e 442
T = o PSR 443
T = o TSRS 444
LT 0= 1SRRI 445
ML STV et s b e sa e s sae e 446
LT 0= 0 o o TSRO 447
LT 0= U oo [T 448
M_PSUDSD . 449
MN_PSUDSIV ettt bbb 450
M_PSUDUSD ..o 451
M_PSUDUSIV ..ottt sttt 452
B T 05 1 o 453
M PUNPCKNDW ... et 454
B2 0 o0 oo g o o [T 456
M PUNPCKAWA ..o e 457
N PUNPCKIDW . e 458
N PUNPCKIAG e e 460
M PUNPCKIWA e e 461
B LT)0 TR 462
_MSIZE FUNCHIONS ...ttt 463
L2 11 (o T | OSSPSR 464
(0100 0 o STV 465
OFFSEEOF e 466
ONEXIT vttt sttt ettt b et s b st e b bt een b bt 467
(0] 0= o TSP PP R PRUPRPRRURPR 468
(0]07< 0o [S USSR 471
010 110 | (= AR PP 473
0011001 1 0 PRSP R PRPTRT 475
(011 1 TP 476
(01011 o OSSP PRSP 477
OULPW .ttt r e r e n e e me e n e e e e nne e e e sreenenreennenrnen 478
0 112 S 479
01 £ (o Y] = o) PR S 4380
_pg_analyzechart, pg_analyzechartmsccccceovierienienenenie s 481
PO BNAIYZEDIE ... e et 4383
_pg_analyzescatter, pg_analyZeSCattermMsccoceverereereeienereresese e 485
_pg_chart, _pg_chartms ... 487
PO _CREITPIE .ttt bbb 490
_pg_chartscatter, _pg_ChartSCattermsoceoeveereenieieneresereses e 493
_PY_AEfAUIICNEAIT ..o 496
_PY_GELChAITES ... e 498
B oo [0 (=1 7= = 1 (= 499
B Lo T 0 1= 5 07/ 1= 501
PG _hlabelChart ..o e 503
CPGINITCNAIT e e 504
_PO_TESELPAIELLEooveeiieieierie e e 506
_PO_TESEESEYIESEL ... e e 508

Xii

Table of Contents

PO _SELChArdEl ... e 510
PO _SEPAIEIE ... e 511
PO_SESEYIESEL ..o 513
PG VIADEICHAIT ..o 515
_PI€, _PIE W, PIE WXY ieiriietireete et seete st see sttt b et st s b e e b e ne e 516
_polygon, _polygon_W, _POlYGON WXYccceeereerererieneriereseneseseeesiesesseneseens 519
0 S 521
Printf, WRITNEE oo e 522
Printf S, WPINNLE S .o st 528
PULC, PULWC ..ttt ettt ettt st et sb e e st e s e e e smeesnesneenbeennenrens 530
0181 o TSR RPR 531
PULCHEr, PUIWCIEKcuiiiiiiiiieiieetee sttt st s 532
pUteNV, _PULENY, _WPULENV ..o s 533
_PUtimage, _PULIMAJE Woeeeeieiereeiereeeseeesie et 535
PULS, _PUIWS ...ttt e sn e e nne e nnenne 537
0L 1 OO P T SPPT 538
00 o SRS 539
[0S0 o USRS 540
FAISE ..ottt s 542
FBING ..ttt 544
=726 [PPSR SO PRSPPI P 545
1= o [0 [SRS 547
FEAIIOC FUNCLIONS ..ottt ettt e s 549
_rectangle, _rectangle W, _rectangle WXYcccccoeeereienenenenenenesesesie s 551
_TEOISEEITONLS ...ttt bbb b 553
_1eMEPAIPAIEIE ... 554
TEMAPPAIEIEE ..o e s 555
(1= 007077 ST 556
FENAIMIE ...t bbb e s e 557
FEWIND ..ottt bt 558
FEWINAGIT vttt 559
10110 L SRR 561

0] | SRR 563

(1 SRS PRSP P P TPRPPPPP 564
LS TSRS 565
Lo 0 IS o= | 567
SCANT_S, WSCANT S .uviiiieieeeecese st e e nesresne et e srenen 573
_SCIOIEXIWINAOW ...t snen 574
== o 11 01V 575
LS o 1= o [PPSR 576
_SEIECIPAIELLE ... e 577
set_ constraint_handler S ... e 578
_SEACHIVEDAGE .eveeieeeeie ettt 580
_SEBKCOION . 581
LSS 1 o1 R 582
_SEtCharsize, _SEICNAISIZE W ..o.couieeiieeieietereeieree e 583
_setcharspacing, SetCharspaCing. Wccccveevevenese e 585
== (o 110 o 587
= = (o1 o) TS 588
SEtENV, _SELENV, WSELENV ..oceiiiiiiieciee sttt nree s 589
CSEHITIMBSK ettt 591
= =1 (0] | S 593

Table of Contents

_SEEOLEXIVECTON ...ttt sttt b e b et b sa e s ae e sae e sne e 595
LSS 1 10] o USSR 596
_SEHINESEYIE e 597
SEtloCale, WSEHOCAIEocvvveieeieseeee e s 599
LSS 1110 L= SRS 601
set_new_handler, _set new_handler ... 602
_SEtPIXEl, SEPIXE W oo ne 604
=<1 0] o) = ox i o) o S 605
= = 1= = o 606
B =10 (oo][RSP 608
I = 1S (U S o OSSPSR 609
B 10 (0 = | U 610
CSEHEXEPEEN ... e 611
_SEHEXEPOSITION .t 613
CSEHEXITOWS ... e e e 614
_SEHEXEWINAOW ..ttt 615
SEEVIOUF . 616
= = 770 = o 00 To = 617
_ SELVIAEOMOUEIOWS ...ttt et r e s srespe e snens 620
= =0V =1 o RSP 621
B = LY/ =11 oo OSSR 622
S = VLS U= = o USSR 623
B = 11T g [0 624
SIONAl et bbb e bbbt b b 626
SIONDIT ettt er e 629
LS o PP PR 630
LS o] o SO SSTSTRRN 631
SlBED ottt b e e b ek et se b e n et nbe e 632
_SNPrintf, SIWPINLE .o ne 633
SNPFiNLF, SIWPITNLE .o e 635
SNPFiNtf S, SIWPHNET S .o s 637
S 0] o< ¢ [TV URURTPRURUROR 639
LS oo [N 642
SPAWN... FUNCLIONS ...ttt 644
_splitpath, _WSPIITPEEN ..o 649
_splitpath2, _Wsplitpath2cccoiiiiiie s 651
SPINEF, SWPHINEE e e 653
SPrNtF S, SWPIINET S i s 655
S o | OSSR R 657
SPANG ettt e ettt h e bt bbb e 658
SSCANE, SWSCANT ...t ettt 659
SSCANT_S, SWSCANT S .t re s 660
stackavail, _StaCkavailccoooviiiiee s 662
S | TSRS 663
CSEAEUSBT vttt b e bt rens 666
S 02 <ot 3 o TP 667
(S0 R 1S (o TR T o 668
strehr, fStrChr, WESCHE .. 669
Stremp, _FSIFCMP, WCSCIMP ..ot 670
SEFCMIPE, WESTITIPDE ettt b et et e 671
SECOII, WESCOII <. 672
Strepy, _FSIICPY, WCSCPY .eeiveieriiieiniesie ettt st e 673

Xiv

Table of Contents

STLos o p IR S (oS o 0 BTV 0= o o ST 674
_Srdate, WSHHAALEoeeeiececte e e e e 675
_SEABC, WESHECveeeeiieie ettt st sttt 676
strdup, _strdup, _fStrdup, _WCSHUDcoevriiiriiirereeeseeie e 678
S L= (0] S PSPPSRSO 679
stritime, wesftime, WSEHHtIME MS ..o 680
stricmp, _stricmp, _fStricmp, _WCSICMP ...oooveeeececece e 684
_SHCOH, WCSICOI e 685
= 1 TR (o= VoS 686
SICAL, WCSICAL ... e et 689
SIICPY, WECSICPY ittt sttt ettt 690
strlen, fStrlen, WCHEN ... s 691
striwr, _striwr, FSrIWr, WCSIWE .o 692
SINCASECITNP ...t 693
strncat, _fStrNCat, WCSNCEEcoveveeeirieieeeese e 694
strnemp, _fSINCMP, WESNCMP ...t 695
_StNCOH, WESNCOIl .. 696
IS0 aTer)V 65 1070 o) VAR.Y(0: g o oY A 697
strnicmp, _strnicmp, _fstrnicmp, _WCSNICMPooeveeveriereeceeeeeee e 699
_StrNicoll, _WCSNICOH ... e 701
CSINING, _WCSNINC ocuvieieiicieete ettt sttt et ereen e s esneeeesreennesnean 702
strnset, _strnset, fStrNSet, WCSNSELooveviiieie e 705
strpbrk, _fstrpbrk, WCSPOIKoooveeeeeee e 706
strrchr, FSUTChr, WESICHE ... 707
strrev, _StreV, FSUTEV, WCSIEV ..o e 708
strset, strset, fStrSel, WCSSEL .ovveeeeciccceeceere e 709
(SRS o A £ S o TR0 o T 710
strspnp, _Strspnp, _fSIrSpNP, _WCSSPINP .cceveererecere e see e e enens 711
SIS, FSISIE, WCSSIT ot 712
_SIIME, _WSIIIME ettt e 713
SIEO0, WCSEOO ... et 714
SIrtOK, FSIITOK, WCSLOKcveeieiicececeeee e 716
LS 0] IR Y ox o TSR 718
LS (0] NIRRTV ox o | ST 719
SIIEOIMEX, WCSEOIMAX ..veecuvieieeeeeeeetesesteeeeeeteesseeetessseeesseessesesbessnseebessnseesseesnees 720
LS (o TU IR Y7t (o1 | T 721
SEEOUIT, WESEOUIL ...t 722
SEEOUMEX, WCSLOUIMBX ...viviareeeseeeeseeee et sre st e et e se s e e e e sneenesees 723
strupr, _strupr, _fSIrUPr, WCSUPE ...ooeeieeeie e e 724
SEEXFIM, WCSKFIIM e e e 725
LS TSP 726
YA = 1 [T UR PRSPPSO 727
-1 OO SSTSN 728
110 0 TSRS 729
1= TR STRSTRSN 730
LINIE e e b e r e ae e nans 732
L0001 = 733
100101 £ SRR 734
L1101 0102 0 0 T PSSRSO 735
EMPNAIM et r e e e e s sr e s e e e e saeenne 736
tolower, tOlOWEr, tOWIOWEYccoiviiieieeie ettt st 738
toupper, _tOUPPES, TOWUPPEL ...o.ueiieiieeiesieeiesteeie et s see e s e seeeseesaeenesaeans 740

XV

Table of Contents

TOWCKTBINS ...ttt b e et sae e e e saeennesaee e 742

174 SRV PR UURURUURPR 743

Ulltog, _Ulltod, UITTOWoceoeiieeeeeee e 745

01307z T U1 0 7= W o Y TSN 747

0 7= T 749

UNQGELC, UNGEIWE ..ottt 751

8]0 = (o R 752

UNTITK Lttt bbbttt sttt e 753

0701 o o: PR STRS 754
UNFEGISLEITONLS ..ttt ne 755

01110 1= SRR 756

01 = U 0= U | (0. R 758

{22 = (o OO 760

(2 = 16 ISP 762

VAL ST oo e 763

_vbprintf, _VOWPINIF ..o 764

[o 1 765

L= o= | OSSP 766

VEPINEE, VEWPIINET e e 767

VIR _S, VEWPITNET S e 769

VESCANE, VIWSCANT ... e 771

viscanf S, VEWSCANT S ..o e 773

VPINEE, VWP oo 775

VPIHNEE_S, VWPIINET S .o 777

(VS o= LIV AVLTES oo | 779

VSCANT_S, VWSCANT_S ...ttt 781

_VSNPHiNtf, VSNWPITNE .o 783

VSNPHNEE, VSNWPIINET .o 785

VSNPHNtf_S, VSNWPINEE S .o e 787

VSPINEE, VSWPEINEE .o e e 789

VPN _S, VOWPITNIT S .o e 791

VSSCANT, VOWSCANT ... 793

VSSCANT S, VOWSCAINT S ...t 795

1Tz 1 TSRS 797

WESEOMDIS ... ettt sttt ne et e et e e e e eneens 800

WCSIOMIIS S .ottt 802

WCEOMID et 804

(Vo2 0] |« TS 805

WCLTBINSveeieeieeiesiee et sb et ae e e st esne s me e be s ae e reene e s b e e meeer e e e e ene e e e sreennas 807

WCEY[IE ettt sttt ettt ettt et h et bt e e e bt et e s h e e b e e s e e bt e ae e bt e neeene e e sne e 808

WWIBIOM ...ttt ettt ettt ae et st see s e s b e s e e s bt ese e et e embeeb e e e e eae e et eneesreennesreennens 810

WWETEE ettt b ettt et e e st e e e et et e e e e et e bt eb e e Rt eaesbenbe e e bas 811

A RE-ENIIANE FUNCLIONSocuieiieeeeieieese ettt se e saesbe st e seestesbe st see s e se e e e eneeneenens 813
N o 0= o= 815
A. Implementation-Defined Behavior of the C LIibraryccccceeevevevieievecceieecesese e e e 817
ALLNULL MBEIO ettt ettt e ettt st s ssesessene st anessenessensesensnsas 817
A.2 Diagnostic Printed by the assert FUNCLION ..o 817
A3 CharaCter TESHING ...cveoeeeeeeireeieet ettt st b e bbb e b e et bese e e ene e e e neenennas 817

Xvi

Table of Contents

AL DOMBEIN EITOFS ..ottt ettt bt s e bbb e e e et e se e st e st ebesbeseeseenbas 818
A.5 Underflow of Floating-Point ValUESccooiiiiiiinieierereie et 818
A.BThe MO FUNCHON ..ottt sttt st 818
A7 The SIgNal FUNCLION ..ottt 818
A B DEFBUIT SIGNAIS ..ecviectieetireetere bbbt 819
A9 THE SIGILL SIGNaL ..ottt 819
A.10 Terminating Newling CharaCterscccovvcerereieieeeee s e e e e s 819
N S o= oY O 4 = - - £ P 819
2 NN 1 P = SRS 820
A.13 File Position in APPend MOOE ..ot 820
A 1A Truncation Of TEXE FIIES ...oouoiiiiieie e e 820
ALLS FIEBUFFEITNG et sttt sb e b sre e 820
A.16 Zer0-Length FilESc.ooiiiieieeeieeeeee e 820
A.LT FIIENGIMES ..ottt a et st e s e st ese st ese s s enessensste e sennnn 820
A LB FIlE ACCESS LIMITS ..ooeiieieieieeeeee ettt st sre e saestesae st e e e neeneenenns 821
A1 DEEtiNg OPEN FIIES ..ot 821
A.20 Renaming with a Name that EXISEScccvvivvieiirese e 821
A.21 Printing POINTEr VEIUESocviiiiiieie sttt sttt enenne s 821
A.22 Reading POINLEY VAIUESccviiiiiiiiie ettt st e neene s 821
A 23 REAING RENGESooivieiiceieie ettt et et e saeenaesreesaesneestennnens 822
A .24 FIlEPOSITION ETOIS ...eiitiie ettt ettt sb bbb b e bt es 822
A.25 Messages Generated by the perror FUNCHION ...t 822
A.26 AlOCATING ZEIO MEIMONY ...ttt bbb et 824
YN A N 0 T= = oo L U o1 o o 824
A.28 The @eXit FUNCLIONcoieieee e en e st 824
A.29 ENVIFONMENE NBIMES ...oveieiiiieiereeseeeeee e esessesiessestesteseesse e seesaeseesseeesessessessessessessnssenseses 824
A.30 The SyStem FUNCLIONccuoiiiee ettt sre e s 824
A.3LTHE SIETON FUNCLION ..oviiiiiiiiisies ettt 824
Y A g 1= T 0= Ao = OSSPSR 826
A.33The ClOCK FUNCLION ...t 826

XVii

XViii

Watcom C Library Reference

Watcom C Library Reference

1 C Library Overview

The C library provides much of the power usually associated with the C language. This chapter introduces
the individual functions (and macros) that comprise the Watcom C library. The chapter Library Functions
and Macros describes each function and macro in complete detail.

Library functions are called as if they had been defined within the program. When the program is linked,
the code for these routines is incorporated into the program by the linker.

Strictly speaking, it is not necessary to declare most library functions since they return i nt valuesfor the
most part. Itispreferred, however, to declare al functions by including the header files found in the
synopsis section with each function. Not only does this declare the return value, but a so the type expected
for each of the arguments as well as the number of arguments. This enables the Watcom C and C++
compilersto check the arguments coded with each function call.

1.1 Classes of Functions

The functions in the Watcom C library can be organized into a number of classes:

Character Manipulation Functions
These functions deal with single characters.

Wide Character Manipulation Functions
These functions deal with wide characters.

Multibyte Character Manipulation Functions
These functions deal with multibyte characters.

Memory Manipulation Functions
These functions manipulate blocks of memory.

String Manipulation Functions
These functions manipulate strings of characters. A character string is an array of zero or
more adjacent characters followed by anull character (* \ 0’) which marksthe end of the
string.

Wide String Manipulation Functions
These functions manipulate strings of wide characters. A wide character string is an array
of zero or more adjacent wide characters followed by anull wide character (L’ \ 0’)
which marks the end of the wide string.

Multibyte String Manipulation Functions
These functions manipulate strings of multibyte characters. A multibyte character is either
asingle-byte or double-byte character. The Chinese, Japanese and Korean character sets
are examples of character sets containing both single-byte and double-byte characters.

Classes of Functions 3

Watcom C Library Reference

4

What determines whether a character is a single-byte or double-byte character is the value
of the lead byte in the sequence. For example, in the Japanese DBCS (double-byte
character set), double-byte characters are those in which the first byte fallsin the range
0x81 - Ox9F or OXEO - OXFC and the second byte falls in the range 0x40 - Ox7E or 0x80 -
OxFC. A string of multibyte characters must be scanned from the first byte (index 0) to the
last byte (index n) in sequence in order to determineif a particular byteis part of a
double-byte character. For example, suppose that a multibyte character string contains the
following byte values.

0x31 0x40 0x41 0x81 0x41 // "1@\. ." where .. is a DB char

Among other characters, it containsthe letter "A" (the first 0x41) and a double-byte
character (0x81 0x41). The second 0x41 is not the letter "A" and that could only be
determined by scanning from left to right starting with the first byte (0x31).

Conversion Functions
These functions convert values from one representation to another. Numeric values, for
example, can be converted to strings.

Memory Allocation Functions
These functions are concerned with allocating and deall ocating memory.

Heap Functions
These functions provide the ahility to shrink and grow the heap, as well as, find heap
related problems.

Math Functions
The mathematical functions perform mathematical computations such as the common
trigonometric calculations. These functions operate on doubl e values, also known as
floating-point values.

Searching Functions
These functions provide searching and sorting capabilities.

Time Functions
These functions provide facilities to obtain and manipulate times and dates.

Variable-length Argument Lists
These functions provide the capability to process a variable number of argumentsto a
function.

Stream /O Functions
These functions provide the "standard" functions to read and write files. Data can be
transmitted as characters, strings, blocks of memory or under format control.

Wide Character Stream /O Functions
These functions provide the "standard" functions to read and write files of wide characters.
Data can be transmitted as wide characters, wide character strings, blocks of memory or
under format control.

Process Primitive Functions
These functions deal with process creation, execution and termination, signal handling, and
timer operations.

Classes of Functions

C Library Overview

Process Environment
These functions deal with process identification, user identification, process groups, system
identification, system time and process time, environment variables, terminal identification,
and configurable system variables.

Directory Functions
These functions provide directory services.

Operating System |/O Functions
These functions are described in the "IEEE Standard Portable Operating System Interface
for Computer Environments' (POSIX 1003.1). The POSIX input/output functions provide
the capability to perform I/O at a"lower level" than the C Language "stream 1/O" functions
(eg.,fopen,fread,fwite,andfcl ose).

File Manipulation Functions
These functions operate directly on files, providing facilities such as deletion of files.

Console |/O Functions
These functions provide the capability to directly read and write characters from the
console.

Default Windowing Functions
These functions provide the capability to manipulate various dialog boxesin Watcom's
default windowing system.

POSI X Realtime Timer Functions
These functions provide realtime timer capabilities.

POSI X Shared Memory Functions
These functions provide memory mapping capabilities.

POSI X Terminal Control Functions
These functions deal with terminal attributes such as baud rate and terminal interface
control functions.

System Database Functions
These functions alow an application to access group and user database information.

Miscellaneous QNX Functions
These functions provide access to avariety of QNX functions such as message passing.

QNX Low-level Functions
These functions provide access to low-level QNX facilities.

I ntel 80x86 Architecture-Specific Functions
This set of functions allows access to Intel 80x86 processor-related functions.

Intel Pentium Multimedia Extension Functions
This set of functions allows access to Intel Architecture Multimedia Extensions (MMX).

Miscellaneous Functions
This collection consists of the remaining functions.

Classes of Functions 5

Watcom C Library Reference

The following subsections describe these function classes in more detail. Each function in the classis
noted with a brief description of its purpose. The chapter Library Functions and Macros provides a
complete description of each function and macro.

1.1.1 Character Manipulation Functions

These functions operate upon single characters of type char . The functions test charactersin various
ways and convert them between upper and lowercase. The following functions are defined:

isalnum
isalpha
isascii
isblank
iscntrl
__iscsym
__iscsymf
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
tolower
toupper

test for letter or digit

test for letter

test for ASCII character

test for blank character

test for control character

test for letter, underscore or digit

test for letter or underscore

test for digit

test for printable character, except space
test for letter in lowercase

test for printable character, including space
test for punctuation characters

test for "white space" characters

test for letter in uppercase

test for hexadecimal digit

convert character to lowercase

convert character to uppercase

1.1.2 Wide Character Manipulation Functions

6

These functions operate upon wide characters of type wchar _t. Thefunctions test wide charactersin
various ways and convert them between upper and lowercase. The following functions are defined:

iswalnum
iswalpha
iswascii
iswblank
iswentrl
__iswesym
__iswesymf
iswdigit
iswgraph
iswlower
iswprint
iswpunct
iswspace
iswupper
iswxdigit
wctype
iswctype
towlower
towupper
wctrans

Classes of Functions

test for letter or digit

test for letter

test for ASCII character

test for blank character

test for control character

test for letter, underscore or digit

test for letter or underscore

test for digit

test for printable character, except space

test for letter in lowercase

test for printable character, including space
test for punctuation characters

test for "white space” characters

test for letter in uppercase

test for hexadecimal digit

construct a property value for agiven "property”
test a character for a specific property

convert character to lowercase

convert character to uppercase

construct mapping value for a given "property"

C Library Overview

towctrans

convert a character based on a specific property

1.1.3 Multibyte Character Manipulation Functions

These functions operate upon multibyte characters. The functions test wide characters in various ways and
convert them between upper and lowercase. The following functions are defined:

_mbgjistojms
_mbcjmstojis
_mbctohira
_mbctokata
mblen
mbtowc

convert JIS code to shift-JIS code

convert shift-JIS code to JIS code

convert double-byte Katakana character to Hiragana character
convert double-byte Hiragana character to Katakana character
determine length of next multibyte character

convert multibyte character to wide character

1.1.4 Memory Manipulation Functions

These functions manipulate blocks of memory. In each casg, the address of the memory block and its size
is passed to the function. The functions that begin with"_f" accept f ar pointers as their arguments
allowing manipulation of any memory location regardless of which memory model your program has been
compiled for. The following functions are defined:

_fmemccpy
_fmemchr
_fmemcmp
_fmemcpy
_fmemicmp
_fmemmove
_fmemset
memccpy
memchr
memcmp
memcpy
memicmp
memmove
memset
movedata
swab
wmemchr
wmemcmp
wmemcpy
wmemmove
wmemset

copy far memory block up to acertain character
search far memory block for a character value
compare any two memory blocks (near or far)
copy far memory block, overlap not allowed
compare far memory, case insensitive

copy far memory block, overlap allowed

set any memory block (near of far) to a character
copy memory block up to a certain character
search memory block for a character value
compare memory blocks

copy memory block, overlap not allowed
compare memory, case insensitive

copy memory block, overlap allowed

set memory block to a character

copy memory block, with segment information
swap bytes of amemory block

search memory block for awide character value
compare memory blocks

copy memory block, overlap not allowed

copy memory block, overlap allowed

set memory block to awide character

See the section " Sring Manipulation Functions' for descriptions of functions that manipulate strings of
data. Seethe section "Wide String Manipulation Functions™ for descriptions of functions that manipulate

wide strings of data.

Classes of Functions 7

Watcom C Library Reference

1.1.5 String Manipulation Functions

A string isan array of characters (with type char) that is terminated with an extra null character
(V0"). Functions are passed only the address of the string since the size can be determined by
searching for the terminating character. The functions that begin with "_f" accept f ar pointers as their
arguments allowing manipulation of any memory location regardless of which memory model your
program has been compiled for. The following functions are defined:

becmp compare two byte strings

bcopy copy abyte string

_bprintf formatted transmission to fixed-length string

bzero zero abyte string

_fstreat concatenate two far strings

_fstrchr locate character in far string

_fstremp compare two far strings

_fstrepy copy far string

_fstrespn get number of string characters not from a set of characters
_fstricmp compare two far strings with case insensitivity
_fstrlen length of afar string

_fstriwr convert far string to lowercase

_fstrncat concatenate two far strings, up to a maximum length
_fstrncmp compare two far strings up to maximum length
_fstrncpy copy afar string, up to a maximum length

_fstrnicmp compare two far strings with case insensitivity up to a maximum length
_fstrnset fill far string with character to a maximum length
_fstrpbrk locate occurrence of a string within a second string
_fstrrchr locate last occurrence of character from a character set
_fstrrev reverse afar string in place

_fstrset fill far string with a character

_fstrspn find number of characters at start of string which are also in a second string
_fstrstr find first occurrence of string in second string

_fstrtok get next token from afar string

_fstrupr convert far string to uppercase

sprintf formatted transmission to string

sscanf scan from string under format control

strcat concatenate string

strchr locate character in string

strcmp compare two strings

strempi compare two strings with case insensitivity

streoall compare two strings using "locale" collating sequence
strepy copy astring

strespn get number of string characters not from a set of characters
_strdec returns pointer to the previous character in string
_strdup allocate and duplicate a string

strerror get error message as string

_stricmp compare two strings with case insensitivity

_strinc return pointer to next character in string

stricat concatenate string into a bounded buffer

stricpy copy string into a bounded buffer

strlen string length

_striwr convert string to lowercase

strncat concatenate two strings, up to a maximum length
strnemp compare two strings up to maximum length

8 Classes of Functions

C Library Overview

_strnent count the number of charactersin thefirst "n" bytes

strncpy copy astring, up to amaximum length

_strnextc return integer value of the next character in string

_strnicmp compare two strings with case insensitivity up to a maximum length
_strninc increment character pointer by "n" characters

_strnset fill string with character to a maximum length

strpbrk locate occurrence of a string within a second string

strrchr locate last occurrence of character from a character set

_strrev reverse astring in place

_strset fill string with a character

strspn find number of characters at start of string which are also in a second string
_strspnp return pointer to first character of string not in set

strstr find first occurrence of string in second string

strtok get next token from string

_Strupr convert string to uppercase

strxfrm transform string to local€’ s collating sequence

_vbprintf same as"”_bprintf" but with variable arguments

vsscanf same as "sscanf" but with variable arguments

For related functions see the sections Conversion Functions (conversions to and from strings), Time
Functions (formatting of dates and times), and Memory Manipulation Functions (operate on arrays without
terminating null character).

1.1.6 Wide String Manipulation Functions

A wide string is an array of wide characters (with type wchar _t) that is terminated with an extra null wide
character (L' \ 0’) . Functions are passed only the address of the string since the size can be determined
by searching for the terminating character. The functionsthat begin with"_f" accept f ar pointers astheir
arguments allowing manipulation of any memory location regardless of which memory model your

program has been compiled for. The following functions are defined:

_bwprintf formatted wide character transmission to fixed-length wesing
swprintf formatted wide character transmission to string
swscanf scan from wide character string under format control
_Vvbwprintf sameas"_bwprintf" but with variable arguments
vswscanf same as "swscanf" but with variable arguments
wcscat concatenate string

weschr locate character in string

wescmp compare two strings

wescmpi compare two strings with case insensitivity

wescoll compare two strings using "locale" collating sequence
wescpy copy astring

wescspn get number of string characters not from a set of characters
_wcsdec returns pointer to the previous character in string
_wesdup allocate and duplicate a string

_wesicmp compare two strings with case insensitivity

_wcesinc return pointer to next character in string

weslcat concatenate string into a bounded buffer

weslcpy copy string into a bounded buffer

wcslen string length

_weslwr convert string to lowercase

wesncat concatenate two strings, up to a maximum length
wesnemp compare two strings up to maximum length

Classes of Functions 9

Watcom C Library Reference

_wesnent count the number of charactersin thefirst "n" bytes

wesnepy copy astring, up to amaximum length

_wcsnextc return integer value of the next multibyte-character in string
_weshicmp compare two strings with case insensitivity up to a maximum length
_wcesninc increment wide character pointer by "n" characters

_wesnset fill string with character to a maximum length

wespbrk locate occurrence of a string within a second string

wesrchr locate last occurrence of character from a character set

_wesrev reverse astring in place

_wesset fill string with a character

WCsspn find number of characters at start of string which are also in a second string
_wesspnp return pointer to first character of string not in set

WCSStr find first occurrence of string in second string

westok get next token from string

_wesupr convert string to uppercase

wesxfrm transform string to local€’ s collating sequence

For related functions see the sections Conversion Functions (conversions to and from strings), Time
Functions (formatting of dates and times), and Memory Manipulation Functions (operate on arrays without
terminating null character).

1.1.7 Multibyte String Manipulation Functions

A wide string is an array of wide characters (with type wchar _t) that isterminated with an extra null wide
character (L’ \ 0’) . Functions are passed only the address of the wide string since the size can be
determined by searching for the terminating character. The functions that begin with "_f" accept f ar
pointers as their arguments allowing manipulation of any memory location regardless of which memory
model your program has been compiled for. The following functions are defined:

mbstowcs convert multibyte character string to wide character string
wcstombs convert wide character string to multibyte character string
wctomb convert wide character to multibyte character

For related functions see the sections Conversion Functions (conversions to and from strings), Time
Functions (formatting of dates and times), and Memory Manipulation Functions (operate on arrays without
terminating null character).

1.1.8 Conversion Functions

These functions perform conversions between objects of various types and strings. The following functions

are defined:

atof string to "double”

atoi string to "int"

atol string to "long int"

atoll string to "long long int"
ecvt "double" to E-format string
fewt "double" to F-format string
gevt "double" to string

itoa "int" to string

[ltoa "long long int" to string
Itoa "long int" to string

10 Classes of Functions

C Library Overview

strtod string to "double”

strtol string to "long int"

strtoll string to "long long int"

strtoul string to "unsigned long int"
strtoull string to "unsigned long long int"
ulltoa "unsigned long long int" to string
ultoa "unsigned long int" to string

utoa "unsigned int" to string

These functions perform conversions between objects of various types and wide character strings. The
following functions are defined:

_itow "int" to wide character string

_lltow "long long int" to wide character string

_ltow "long int" to wide character string

_ulltow "unsigned long long int" to wide character string
_ultow "unsigned long int" to wide character string
_utow "unsigned int" to wide character string

wcstod wide character string to "double"

wcstol wide character string to "long int"

wcstoll wide character string to "long long int"

westoul wide character string to "unsigned long int"
westoull wide character string to "unsigned long long int"
_wtof wide character string to "double”

_wtoi wide character string to "int"

_wtol wide character string to "long int"

_wtall wide character string to "long long int"

Seealsot ol ower,tow ower, nbct ol ower,toupper,towipper, nbctoupper,strlw,
_weslwr, _nbslw,strupr, wcsupr and_nbsupr which convert the cases of characters and
strings.

1.1.9 Memory Allocation Functions
These functions allocate and de-allocate blocks of memory.

The default data segment has a maximum size of 64K bytes. It may be less in a machine with insufficient
memory or when other programsin the computer already occupy some of the memory. The _nnal | oc
function allocates space within thisareawhilethe _f mal | oc function allocates space outside the area (if
itisavailable).

Inasmall datamodel, the mal | oc, cal | oc and r eal | oc functionsusethe _nnmal | oc function to
acquire memory; in alarge datamodel, the _f mal | oc function is used.

It is also possible to alocate memory from a based heap using _bral | oc. Based heaps are similar to far
heapsin that they are located outside the normal data segment. Based pointers only store the offset portion
of the full address, so they behave much like near pointers. The selector portion of the full address
specifies which based heap a based pointer belongs to, and must be passed to the various based heap
functions.

It isimportant to use the appropriate memory-deallocation function to free memory blocks. The _nfree

function should be used to free space acquired by the _ncal | oc, _nmal | oc, or _nreal | oc functions.
The _f f r ee function should be used to free space acquired by the _f cal | oc,_fmal | oc, or

Classes of Functions 11

Watcom C Library Reference

_freall oc functions. The _bf r ee function should be used to free space acquired by the _bcal | oc,
_bmal | oc, or _breal | oc functions.

Thef r ee function will usethe _nf r ee function when the small data memory model is used; it will use
the f f r ee function when the large data memory model is being used.

It should be noted that the _f nal | oc and_nnal | oc functions can both be used in either data memory
model. The following functions are defined:

alloca allocate auto storage from stack
_bcalloc allocate and zero memory from a based heap
_bexpand expand a block of memory in a based heap
_bfree free ablock of memory in a based heap
_bfreeseg free abased heap
_bheapseg allocate a based heap
_bmalloc allocate a memory block from a based heap
_bmsize return the size of amemory block
_brealloc re-allocate a memory block in a based heap
calloc allocate and zero memory
_expand expand a block of memory
_fcalloc alocate and zero amemory block (outside default data segment)
_fexpand expand a block of memory (outside default data segment)
_ffree free ablock allocated using *_fmalloc"
_fmalloc allocate amemory block (outside default data segment)
_fmsize return the size of amemory block
_frealloc re-allocate a memory block (outside default data segment)
free free ablock alocated using "malloc”, "calloc" or "realloc"
_freect return number of objects that can be allocated
halloc allocate huge array
hfree free huge array
malloc alocate amemory block (using current memory model)
_memavl return amount of available memory
_memmax return largest block of memory available
_msize return the size of amemory block
_ncalloc allocate and zero amemory block (inside default data segment)
_nexpand expand a block of memory (inside default data segment)
_nfree free ablock allocated using " _nmalloc"
_nmalloc allocate amemory block (inside default data segment)
_nmsize return the size of amemory block
_nrealloc re-allocate a memory block (inside default data segment)
realloc re-allocate a block of memory
sbrk set alocation "break” position
stackavail determine available amount of stack space
1.1.10 Heap Functions

These functions provide the ability to shrink and grow the heap, aswell as, find heap related problems. The
following functions are defined:

_heapchk perform consistency check on the heap
_bheapchk perform consistency check on a based heap
_fheapchk perform consistency check on the far heap
_nheapchk perform consistency check on the near heap

12 Classes of Functions

C Library Overview

_heapgrow
_fheapgrow
_nheapgrow
_heapmin
_bheapmin
_fheapmin
_nheapmin
_heapset
_bheapset
_fheapset
_nheapset
_heapshrink
_fheapshrink
_bheapshrink
_nheapshrink
_heapwalk
_bheapwalk
_fheapwalk
_nheapwalk

1.1.11 Math Functions

grow the heap

grow the far heap

grow the near heap up to itslimit of 64K

shrink the heap as small as possible

shrink a based heap as small as possible

shrink the far heap as small as possible

shrink the near heap as small as possible

fill unallocated sections of heap with pattern

fill unallocated sections of based heap with pattern
fill unallocated sections of far heap with pattern
fill unallocated sections of near heap with pattern
shrink the heap as small as possible

shrink the far heap as small as possible

shrink a based heap as small as possible

shrink the near heap as small as possible

walk through each entry in the heap

walk through each entry in a based heap

walk through each entry in the far heap

walk through each entry in the near heap

These functions operate with objects of type doubl e, also known as floating-point numbers. The Intel
8087 processor (and its successor chips) is commonly used to implement floating-point operations on
personal computers. Functions ending in "87" pertain to this specific hardware and should be isolated in
programs when portability is a consideration. The following functions are defined:

abs
acos
acosh
asin
asinh
atan
atan2
atanh
bessdl
cabs
ceil
_clear87
_control87
cos
cosh

div

exp

fabs
_finite
floor
fmod
_fpreset
frexp
hypot
imaxabs
imaxdiv

absolute value of an object of type "int"

arccosine

inverse hyperbolic cosine

arcsine

inverse hyperbolic sine

arctangent of one argument

arctangent of two arguments

inverse hyperbolic tangent

bessel functionsjo, j1, jn, y0, y1, and yn

absolute value of complex number

ceiling function

clears floating-point status

sets new floating-point control word

cosine

hyperbolic cosine

compute quotient, remainder from division of an "int" object
exponential function

absolute value of "double"

determines whether floating-point valueisvalid

floor function

modulus function

initializes for floating-point operations

fractional exponent

compute hypotenuse

get quotient, remainder from division of object of maximum-size integer type
absolute value of an object of maximum-size integer type

Classes of Functions 13

Watcom C Library Reference

jo

jl

jn
labs
Idexp
[div
log
log10
log2
matherr
max
min
modf
pow
rand
sin
sinh
sort
srand
_Status87
tan
tanh
y0

yl

yn

return Bessel functions of the first kind (described under "bessel Functions")
return Bessel functions of the first kind (described under "bessel Functions')
return Bessel functions of the first kind (described under "bessel Functions”)
absolute value of an object of type "long int"

multiply by a power of two

get quotient, remainder from division of object of type "long int"

natural logarithm

logarithm, base 10

logarithm, base 2

handles error from math functions

return maximum of two arguments

return minimum of two arguments

get integral, fractional parts of "double"

raise to power

random integer

sine

hyperbolic sine

sguare root

set starting point for generation of random numbers using "rand" function
gets floating-point status

tangent

hyperbolic tangent

return Bessel functions of the second kind (described under "bessel")

return Bessel functions of the second kind (described under "bessel")

return Bessel functions of the second kind (described under "bessel")

1.1.12 Searching Functions

These functions provide searching and sorting capabilities. The following functions are defined:

bsearch
Ifind
Isearch
gsort

1.1.13 Time Functions

find adataitemin an array using binary search
find adataitemin an array using linear search
linear search array, add item if not found

sort an array

These functions are concerned with dates and times. The following functions are defined:

asctime
_asctime
_wasctime
__wasctime
clock
ctime
_ctime
_wctime
__wctime
difftime
ftime
gmtime
_gntime

14 Classes of Functions

makes time string from time structure

makes time string from time structure

makes time string from time structure

makes time string from time structure

gets time since program start

gets calendar time string

gets calendar time string

gets calendar time string

gets calendar time string

calculate difference between two times

returns the current timein a"timeb" structure

convert calendar time to Coordinated Universal Time (UTC)
convert calendar time to Coordinated Universal Time (UTC)

C Library Overview

localtime convert calendar time to local time
_localtime convert calendar time to local time
mktime make calendar time from local time
_strdate return date in buffer

strftime format date and time

wcsftime format date and time
_wstrftime_ms format date and time

_strtime return time in buffer

_wstrtime return timein buffer

time get current calendar time

tzset set global variablesto reflect the local time zone
_wstrdate return date in buffer

1.1.14 Variable-length Argument Lists

Variable-length argument lists are used when a function does not have afixed number of arguments. These
macros provide the capability to access these arguments. The following functions are defined:

va_arg get next variable argument
va_end complete access of variable arguments
va_start start access of variable arguments

1.1.15 Stream I/0 Functions

A streamisthe name given to afile or device which has been opened for data transmission. When a stream
is opened, apointer to a Fl LE structure isreturned. This pointer is used to reference the stream when other
functions are subsequently invoked.

When a program begins execution, there are a number of streams aready open for use:

stdin Standard Input: input from the console
stdout Standard Output: output to the console
stderr Standard Error: output to the console (used for error messages)

These standard streams may be re-directed by use of the f r eopen function.

See also the section File Manipulation Functions for other functions which operate upon files.

The functions referenced in the section Operating System |/O Functions may also be invoked (use the
fi | eno function to obtain the file descriptor). Since the stream functions may buffer input and output,

these functions should be used with caution to avoid unexpected results.

The following functions are defined:

clearerr clear end-of-file and error indicators for stream
fclose close stream

fcloseall close al open streams

fdopen open stream, given descriptor

feof test for end of file

ferror test for file error

Classes of Functions 15

Watcom C Library Reference

fflush flush output buffer

fgetc get next character from file

_fgetchar equivalent to "fgetc" with the argument "stdin"
fgetpos get current file position

fgets get astring

flushall flush output buffersfor all streams

fopen open astream

fprintf format output

fputc write a character

_fputchar write a character to the "stdout" stream

fputs write astring

fread read a number of objects

freopen re-opens a stream

fscanf scan input according to format

fseek set current file position, relative

fsetpos set current file position, absolute

_fsopen open a shared stream

ftell get current file position

fwrite write a number of objects

getc read character

getchar get next character from "stdin”

gets get string from "stdin”

perror write error message to "stderr" stream

printf format output to "stdout”

putc write character to file

putchar write character to "stdout"

puts write string to "stdout"

_putw write int to stream file

rewind position to start of file

scanf scan input from "stdin" under format control
setbuf set buffer

setvbuf set buffering

tmpfile create temporary file

ungetc push character back on input stream

vfprintf same as "fprintf" but with variable arguments
vfscanf same as "fscanf" but with variable arguments
vprintf same as "printf" but with variable arguments
vscanf same as "scanf" but with variable arguments

See the section Directory Functions for functions which are related to directories.

1.1.16 Wide Character Stream I/O Functions

The previous section describes some general aspects of stream input/output. The following describes
functions dealing with streams containing multibyte character sequences.

After astream is associated with an external file, but before any operations are performed on it, the stream
iswithout orientation. Once awide character input/output function has been applied to a stream without
orientation, the stream becomes wide-oriented. Similarly, once a byte input/output function has been
applied to a stream without orientation, the stream becomes byte-oriented. Only a successful call to

f r eopen can otherwise alter the orientation of a stream (it removes any orientation). 'Y ou cannot mix
byte input/output functions and wide character input/output functions on the same stream.

16 Classes of Functions

C Library Overview

A file positioning function can cause the next wide character output function to overwrite a partial
multibyte character. This can lead to the subsequent reading of a stream of multibyte characters containing

an invalid character.

When multibyte characters are read from a stream, they are converted to wide characters. Similarly, when
wide characters are written to a stream, they are converted to multibyte characters.

The following functions are defined:

fgetwc
_fgetwchar
fgetws
fprintf
fputwe
_fputwchar
fputws
fscanf
fwprintf
fwscanf
getwc
getwchar
_getws
putwc
putwchar
_putws
ungetwc
viwprintf
viwscanf
vswprintf
wwprintf
vwscanf
_wfdopen
_wfopen
_wifreopen
_wfsopen
_\wperror
wprintf
wscanf

get next wide character from file

equivalent to "fgetwc" with the argument "stdin”

get awide character string

"C" and"S" extensions to the format specifier

write awide character

write a character to the "stdout” stream

write awide character string

"C" and"S" extensions to the format specifier
formatted wide character output

scan wide character input according to format

read wide character

get next wide character from "stdin”

get wide character string from "stdin"

write wide character to file

write wide character to "stdout"

write wide character string to "stdout"

push wide character back on input stream

same as "fwprintf" but with variable arguments

same as "fwscanf" but with variable arguments

same as "swprintf" but with variable arguments

same as "wprintf" but with variable arguments

same as "wscanf" but with variable arguments

open stream, given descriptor using a wide character "mode”
open a stream using wide character arguments
re-opens a stream using wide character arguments
open a shared stream using wide character arguments
write error message to "stderr" stream

format wide character output to "stdout”

scan wide character input from "stdin" under format control

See the section Directory Functions for functions which are related to directories.

1.1.17 Process Primitive Functions

These functions deal with process creation, execution and termination, signal handling, and timer

operations.

When anew processis started, it may replace the existing process

* P_OVERLAY is specified with the spawn. . . functions

s theexec. ..

routines are invoked

Classes of Functions

17

Watcom C Library Reference

or the existing process may be suspended while the new process executes (control continues at the point
following the place where the new process was started)

* P_WAI T is specified with thespawn. . . functions
* syst emisused

The following functions are defined:

abort immediate termination of process, return code 3
atexit register exit routine

delay delay for number of milliseconds
execl chain to program

execle chain to program, pass environment
execlp chain to program

execlpe chain to program, pass environment
execv chain to program

execve chain to program, pass environment
execvp chain to program

execvpe chain to program, pass environment
exit exit process, set return code

_Exit exit process, set return code

_exit exit process, set return code

onexit register exit routine

raise signal an exceptional condition

signal set handling for exceptional condition
deep delay for number of seconds

spawnl create process

spawnle create process, set environment
spawnlp create process

spawnlpe create process, set environment
spawnv create process

spawnve create process, set environment
Spawnvp create process

spawnvpe create process, set environment
system execute system command

wait wait for any child process to terminate
Thereareeight spawn. .. and exec. .. functionseach. The"..." isoneto threeletters:

«"[" or "v" (oneisrequired) to indicate the way the process parameters are passed

"p" (optional) to indicate whether the PATH environment variable is searched to locate the program
for the process

« "e" (optiond) to indicate that the environment variables are being passed

1.1.18 Process Environment

These functions deal with process identification, user identification, process groups, system identification,
system time and process time, environment variables, terminal identification, and configurable system
variables. The following functions are defined:

18 Classes of Functions

C Library Overview

_bgetemd get command line

clearenv delete environment variables

getcmd get command line

getenv get environment variable value

putenv add, change or delete environment variable
_searchenv search for afilein list of directories

setenv add, change or delete environment variable
_wgetenv get environment variable value

_wputenv add, change or delete environment variable
_wsetenv add, change or delete environment variable

1.1.19 Directory Functions

These functions pertain to directory manipulation. The following functions are defined:

chdir change current working directory
closedir close opened directory file
getewd get current working directory
mkdir make a new directory

opendir open directory file

readdir read file name from directory
rewinddir reset position of directory stream
rmndir remove adirectory

1.1.20 Operating System I/O Functions

These functions operate at the operating-system level and are included for compatibility with other C
implementations. It isrecommended that the functions used in the section File Manipulation Functions be
used for new programs, as these functions are defined portably and are part of the ANSI standard for the C
language.

The functionsin this section reference opened files and devices using afile descriptor which is returned
when thefileis opened. Thefile descriptor is passed to the other functions.

The following functions are defined:

chsize change the size of afile

close closefile

creat create afile

dup duplicate file descriptor, get unused descriptor number
dup2 duplicate file descriptor, supply new descriptor number
eof test for end of file

fildlength get filesize

fileno get file descriptor for stream file

fstat get file status

fsync write queued file and filesystem data to disk

lock lock a section of afile

locking lock/unlock a section of afile

Iseek set current file position

open open afile

read read arecord

setmode set file mode

Classes of Functions 19

Watcom C Library Reference

sopen open afilefor shared access
tell get current file position
umask set file permission mask
unlink delete afile

unlock unlock a section of afile
write write arecord

1.1.21 File Manipulation Functions

These functions operate directly with files. The following functions are defined:

remove delete afile

rename rename afile

stat get file status

tmpnam create name for temporary file
utime set modification time for afile

1.1.22 Console I/0 Functions

These functions provide the capability to read and write data from the console. Datais read or written
without any special initialization (devices are not opened or closed), since the functions operate at the
hardware level.

The following functions are defined:

cgets get astring from the console

cprintf print formatted string to the console
cputs write a string to the console

cscanf scan formatted data from the console
getch get character from console, no echo
getche get character from console, echo it
kbhit test if keystroke available

putch write a character to the console
ungetch push back next character from console

1.1.23 POSIX Realtime Timer Functions

These functions provide realtime timer capabilities. The following functions are defined:

1.1.24 POSIX Shared Memory Functions

These functions provide memory mapping capabilities. The following functions are defined:

1.1.25 POSIX Terminal Control Functions

The following functions are defined:

20 Classes of Functions

C Library Overview

1.1.26 System Database Functions

The following functions are defined:

1.1.27 Miscellaneous QNX Functions

The following functions are defined:

basename return a pointer to the first character following thelast "/" in a string

1.1.28 QNX Low-level Functions

These functions provide the capability to invoke QNX functions directly from a program. The following
functions are defined:

1.1.29 Intel 80x86 Architecture-Specific Functions

These functions provide the capability to invoke Intel 80x86 processor-related functions directly from a
program. Functions that apply to the Intel 8086 CPU apply to that family including the 80286, 80386,
80486 and Pentium processors. The following functions are defined:

_disable disable interrupts

_enable enableinterrupts

FP_OFF get offset part of far pointer

FP_SEG get segment part of far pointer

inp get one byte from hardware port

inpw get two bytes (one word) from hardware port

int386 cause 386/486/Pentium CPU interrupt

int386x cause 386/486/Pentium CPU interrupt, with segment registers
int86 cause 8086 CPU interrupt

int86x cause 8086 CPU interrupt, with segment registers

intr cause 8086 CPU interrupt, with segment registers
MK_FP make afar pointer from the segment and offset values
nosound turn off the speaker

outp write one byte to hardware port

outpw write two bytes (one word) to hardware port

segread read segment registers

sound turn on the speaker at specified frequency

1.1.30 Intel Pentium Multimedia Extension Functions

This set of functions allows access to Intel Architecture Multimedia Extensions (MM X). These functions
areimplemented asin-lineintrinsic functions. The general format for most functionsis:

mm result = mm function(mm operandl, mm operand2);
These functions provide a simple model for use of Intel Multimedia Extension (MM X). More advanced

use of MM X can be implemented in much the same way that these functions are implemented. See the
<nmmi nt ri n. h> header file for examples. The following functions are defined:

Classes of Functions 21

Watcom C Library Reference

22

_m_packssdw

_m_packsswb
_m packuswb
_m _paddb
_m_paddd
_m _paddsb
_m_paddsw
_m_paddusb
_m_paddusw
_m_paddw
_m pand
_m_pandn
_m_pcmpegb
_m pcmpeqd
_m_pcmpeqw
_m_pcmpgtb
_m_pcmpgtd
_m_pcmpgtw
_m_pmaddwd
_m_pmulhw

_m _pmullw
_m_por
_m pdlid
_m pdlidi
_m pdliq
_m pdlqgi
_m psllw
_m psllwi
_m psrad
_m psradi
_m psraw
_m_psrawi
_m psrid
_m psridi
_m psrlq
_m psriqi
_m psriw

_m_psriwi

_m_psubb
_m _psubd

Classes of Functions

pack and saturate 32-bit double-words from two MM elementsinto signed 16-hit
words

pack and saturate 16-bit words from two MM elements into signed bytes

pack and saturate signed 16-bit words from two MM elements into unsigned bytes
add packed bytes

add packed 32-bit double-words

add packed signed bytes with saturation

add packed signed 16-bit words with saturation

add packed unsigned bytes with saturation

add packed unsigned 16-bit words with saturation

add packed 16-bit words

AND 64 bits of two MM elements

invert the 64 bitsin MM element, then AND 64 bits from second MM element
compare packed bytes for equality

compare packed 32-bit double-words for equality

compare packed 16-bit words for equality

compare packed bytes for greater than relationship

compare packed 32-bit double-words for greater than relationship

compare packed 16-bit words for greater than relationship

multiply packed 16-bit words, then add 32-bit results pair-wise

multiply the packed 16-bit words of two MM elements, then store high-order 16
bits of results

multiply the packed 16-bit words of two MM elements, then store low-order 16
bits of results

OR 64 bits of two MM elements

shift left each 32-bit double-word by amount specified in second MM element
shift left each 32-bit double-word by amount specified in constant value

shift left each 64-hit quad-word by amount specified in second MM element
shift left each 64-hit quad-word by amount specified in constant value

shift left each 16-hit word by amount specified in second MM element

shift left each 16-bit word by amount specified in constant value

shift right (with sign propagation) each 32-hit double-word by amount specified in
second MM element

shift right (with sign propagation) each 32-hit double-word by amount specified in
constant value

shift right (with sign propagation) each 16-bit word by amount specified in second
MM element

shift right (with sign propagation) each 16-bit word by amount specified in
constant value

shift right (with zero fill) each 32-bit double-word by an amount specified in
second MM element

shift right (with zero fill) each 32-bit double-word by an amount specified in
constant value

shift right (with zero fill) each 64-bit quad-word by an amount specified in second
MM element

shift right (with zero fill) each 64-bit quad-word by an amount specified in
constant value

shift right (with zero fill) each 16-bit word by an amount specified in second MM
element

shift right (with zero fill) each 16-bit word by an amount specified in constant
value

subtract packed bytesin MM element from second MM element

subtract packed 32-bit dwordsin MM element from second MM element

C Library Overview

_m_psubsb subtract packed signed bytesin MM element from second MM element with
saturation

_m_psubsw subtract packed signed 16-bit wordsin MM element from second MM element
with saturation

_m psubusb subtract packed unsigned bytesin MM element from second MM element with
saturation

_m_psubusw subtract packed unsigned 16-bit wordsin MM element from second MM element
with saturation

_m_psubw subtract packed 16-bit wordsin MM element from second MM element

_m_punpckhbw interleave bytes from the high halves of two MM elements

_m_punpckhdq interleave 32-bit double-words from the high halves of two MM elements

_m_punpckhwd interleave 16-bit words from the high halves of two MM elements

_m_punpcklbw interleave bytes from the low halves of two MM elements

_m punpckidg interleave 32-bit double-words from the low halves of two MM elements

_m_punpckiwd interleave 16-bit words from the low halves of two MM elements

_m_pxor XOR 64 bits from two MM elements

_m to_int retrieve low-order 32 bits from MM value

1.1.31 Miscellaneous Functions

The following functions are defined:

assert
_fullpath
localeconv
longjmp
_lrotl

_lrotr

main
offsetof

_rotl

_rotr

setjmp
_makepath
setlocale
_splitpath
_splitpath2
_wmakepath
_wesetlocale
_wsplitpath
_wsplitpath2

1.2 Header Files

test an assertion and output a string upon failure
return full path specification for file

obtain local e specific conversion information
return and restore environment saved by "setjmp"
rotate an "unsigned long" left

rotate an "unsigned long" right

the main program (user written)

get offset of field in structure

rotate an "unsigned int" |eft

rotate an "unsigned int" right

save environment for use with "longjmp" function
make afull filename from specified components
set locale category

split afilename into its components

split afilename into its components

make afull filename from specified components
set locale category

split afilename into its components

split afilename into its components

The following header files are supplied with the C library. As has been previously noted, when alibrary
function is referenced in a source file, the related header files (shown in the synopsis for that function)
should be included into that source file. The header files provide the proper declarations for the functions
and for the number and types of arguments used with them. Constant values used in conjunction with the
functions are also declared. The files can be included multiple times and in any order.

Header Files 23

Watcom C Library Reference

When the Watcom C compiler option "za" isused ("ANSI conformance™), the macro NO_EXT_KEYS s
predefined. The "za" option is used when you are creating an application that must conform to a certain
standard, whether it be ANSI or POSIX. The effect on theinclusion of ANSI- and POSIX-defined header
filesisthat certain portions of the header files are omitted. For ANSI header files, these are the portions
that go beyond the ANSI standard. For POSIX header files, these are the portions that go beyond the
POSIX standard. Feature test macros may then be defined to select those portions which are omitted. Two
feature test macros may be defined.

_POSIX_SOURCE Include those portions of the ANSI header files which relate to the POSIX
standard (IEEE Sandard Portable Operating System Interface for Computer
Environments - POS X 1003.1)

OQNX SOURCE Include those portions of the ANSI and POSIX header fileswhich relate to
the POSIX standard and all extensions provided by the QNX system. In
essence, the definition of _ QNX_ SOURCE before any header files are
included is equivalent to omitting the specification of the "za" compiler
option. Notethat when ~ QNX_ SOURCE is defined, it encompasses
_POsI X_SOURCE so it is not necessary to define_ POSI X SOURCE aso.

Feature test macros may be defined on the command line or in the source file before any header filesare
included. The latter isillustrated in the following examplein which an ANS| and POSIX conforming
application is being developed.

#defi ne _POSI X SOURCE
#include <limts. h>
#i ncl ude <stdio. h>

#if defined(_QNX_SOURCE)
#i ncl ude "non_PCSI X _header 1. h"

#i ncl ude "non_PCSI X _header 2. h"
#i ncl ude "non_PCSI X _header 3. h"
#endi f

The source code is then compiled using the "za" option.

Thefollowing ANSI header files are affected by the _ POSI X_ SOURCE feature test macro.

l[imts.h
setjnp.h
signal . h
stdio.h
stdlib.h
time.h

The following ANSI and POSIX header files are affected by the _ QNX_ SOURCE feature test macro.

24 Header Files

C Library Overview

ctype. h (ANSI)
env. h (PCSI X)
fentl . h (PCSI X)
float.h (ANSI)
limts.h (ANSI)
mat h. h (ANSI)
process. h (extension to POSI X)
setjnp.h (ANSI)
signal . h (ANSI)
sys/stat.h (PCsI X)
stdio.h (ANSI)
stdlib.h (ANSI)
string.h (ANSI)
termi os. h (PCSI X)
tine.h (ANSI)
sys/types. h (PCsI X)
uni std. h (PCsI X)

1.2.1 Header Files in /usr/include

The following header files are provided with the software. The header filesthat are located in the
[usr/incl ude directory are described first.

assert.h This SO C90 header fileis required when an assert macroisused. These assertions
will beignored when the identifier NDEBUG s defined.

conio.h This header file declares console and Intel 80x86 port input/output functions.

ctype.h This 1SO C90 header file declares functions that perform character classification and case
conversion operations. Similar functions for wide characters are declared in <wctype.h>.

dirent.h This POSIX header file declares functions related to directories and the type DI Rwhich
describes an entry in adirectory.

env.h This POSIX header file declares environment string functions.

errno.h This 1SO C90 header file provides the ext er n declaration for error variable er r no and

provides the symbolic names for error codes that can be placed in the error variable.

fentl.h This POSIX header file defines the flags used by the cr eat fcntl, open, and sopen
functions.
fenv.h This 1SO C99 header file defines several types and declares severa functionsthat give

access to the floating point environment. These functions can be used to control status
flags and control modes in the floating point processor.

float.h This 1SO C90 header file declares constants related to floating-point numbers, declarations
for low-level floating-point functions, and the declaration of the floating-point exception
codes.

fnmatch.h This header file declares the pattern matching function f nmat ch

Header Files 25

Watcom C Library Reference

graph.h

orp.h

i86.h

inttypes.h

limits.h

locale.h

malloc.h

math.h

mmintrin.h

26 Header Files

This header file contains structure definitions and function declarations for the Watcom C
Graphics library functions.

This POSIX header file contains structure definitions and function declarations for group
operations.

This header fileis used with functions that interact with the Intel architecture. It defines
the structs and unions used to handle the input and output registers for the Intel 80x86 and
80386/80486 interrupt interface routines. It includes prototypes for the interrupt functions,
definitions for the FP_ OFF, FP_ SEGand MK _ FP macros, and definitions for the following
structures and unions:

REGS describes the CPU registers for Intel 8086 family.

SREGS describes the segment registers for the Intel 8086 family.

REGPACK describes the CPU registers and segment registers for Intel 8086 family.
INTPACK describes the input parameter to an "interrupt” function.

This 1SO C99 header file includes <stdint.n> and expands on it by definition macros for
printing and scanning specific sized integer types. This header also declares severa

functions for manipulating maximum sized integers.

Note that the format macros are not visible in C++ programs unless the macro
__STDC_FORMAT _MACROS is defined.

This 1SO C90 header file contains constant declarations for limits or boundary values for
ranges of integers and characters.

This SO C90 header file contains declarations for the categories (LC. . .) of locales
which can be selected using the set | ocal e function which is also declared.

This header file declares the memory allocation and deallocation functions.

This ANSI header file declares the mathematical functions (which operate with
floating-point numbers) and the structures:

exception describes the exception structure passed to the mat her r function;
symbolic constants for the types of exceptions are included

complex declares a complex number

This header file declares functions that interact with the Intel Architecture Multimedia
Extensions. It defines the datatype used to store multimedia values:

__moe4 describes the 64-bit multimedia data element. Note: the underlying

implementation details of this datatype are subject to change. Other
compilers may implement a similar datatype in a different manner.

It also contains prototypes for multimedia functions and pragmas for the in-line generation
of code that operates on multimedia registers.

C Library Overview

process.h

pwd.h

regex.h

search.h
setjmp.h
share.h

signal.h
stdarg.h

stdbool.h

stddef.h

stdint.h

stdio.h

stdlib.h

string.h
tar.h
term.h

termios.h

This header file declaresthe spawn. . . functions, the exec. . . functions, and the
syst emfunction. The file aso contains declarations for the constants P_WAI T,
P_NOWAI T, P_NOWAI TO, and P_ OVERLAY.

This POSIX header file contains structure definitions and function declarations for
password operations.

This header file contains structure definitions and function declarations for regular
expression handling.

This header file declares the functions | fi nd and | sear ch

This1SO C90 header file declaresthe set j np and | ongj np functions.

This header file defines constants for shared accessto files using the sopen function.
This 1SO C90 header file declaresthe si gnal and r ai se functions.

This 1SO C90 header file defines the macros which handle variable argument lists.

This 1SO C99 header file defines the macro bool and themacrostr ue and f al se for
usein C programs. If this header isincluded in a C++ program there is no effect. The C++
reserved words will not be redefined. However the definition of bool ,true ,and

f al se used in aC program will be compatible with their C++ counterparts. In particular,
a C function declared astaking a bool parameter and a structure containing a bool
member can both be shared between C and C++ without error.

This 1SO C90 header file defines afew popular constants and typesincluding NULL (null
pointer), si ze_t (unsigned size of an object), and pt rdi f f _t (difference between two
pointers). It also contains adeclaration for the of f set of macro.

This 1SO C99 header file defines numerous type names for integers of various sizes. Such
type names provide a reasonably portable way to refer to integers with a specific number of
bits. This header file also defines macros that describe the minimum and maximum values
for these types (similar to the macrosin limits.h), and macros for writing integer constants
with specific sized types.

Note that in C++ programs the limit macros are not visible unless the macro

__STDC LI M T_MACROS isdefined. Similarly the constant writing macros are not
visibleunlessthemacro _ STDC CONSTANT _MACRCS is defined.

This 1SO C90 header file declares the standard input/output functions. Files, devices and
directories are referenced using pointers to objects of the type FI LE.

This 1SO C90 header file declares many standard functions excluding those declared in
other header files discussed in this section.

This 1SO C90 header file declares functions that manipulate strings or blocks of memory.
This POSIX header file contains header block information for the tar format.
This header file contains terminal information definitions.

This POSIX header file contains terminal 1/O system types.

Header Files 27

Watcom C Library Reference

time.h

unistd.h

unix.h

utime.h

varargs.h

wchar.h

wctype.h

This ANSI header file declares functions related to times and dates and defines the
structure st ruct tm

This POSIX header file declares functions that perform input/output operations at the
operating system level. These functions use file descriptors to reference files or devices.
Thefunction f st at isdeclared in the <sys/ st at . h> header file.

This header file contains definitions that aid in porting traditional UNIX code.

This POSIX header file declares the ut i me function and defines the structure ut i nbuf
that is used by it.

ThisUNIX System V header file provides an alternate way of handling variable argument
lists. The equivalent ANSI header fileis <stdarg.h>.

This 1SO C99 header file defines several datatypesincluding wechar _t, si ze_t,
nbst at e_t (an object that can hold conversion state information necessary to convert
between multibyte characters and wide characters), wet ype_t (ascaar type that can hold
values which represent local e-specific character classification), and wi nt _t whichisan
integral type that can hold any wehar _t value aswell as\WECF (acharacter that isnot in
the set of "wchar_t" characters and that is used to indicate end-of-file on an input stream).
The functions that are declared in this header file are grouped as follows:

* Wide character classification and case conversion.

* Input and output of wide characters, or multibyte characters, or both.

* Wide string numeric conversion.

* Wide string manipulation.

* Wide string data and time conversion.

» Conversion between multibyte and wide character sequences.
This 1SO C99 header file declares functions that perform characater classification and case

conversion operations on wide characters. Similar functions for ordinary characters are
declared in <ctype.h>.

1.2.2 Header Files in /usr/include/sys

The following header files are present in the sys subdirectory. Their presence in this directory indicates
that they are system-dependent header files.

sys/con_msg.h This header file contains definitions for the console driver.

sys/console.h This header file contains "public" definitions for the console driver.

sys/debug.h

sys/dev.h

This header file contains debugger data structures.

This header file contains "public" device administrator definitions.

sys/dev_msg.h This header file contains "public" device driver messages.

28 Header Files

C Library Overview

syd/disk.h This header file contains non-portable file system definitions.
sys/dumper.h This header file contains the dumper file structure.
sys/fd.h This header file contains file descriptor data structures.
sys/fsys.h This header file contains non-portable file system definitions.
sys/fsysinfo.h This header file contains declarations related to the fsysinfo() function.
sys/fsys msg.h This header file contains non-portable file system message definitions.
syd/inline.h Contains handy pragmas that are often used when doing low-level programming.
syslio_msg.h Thisheader file contains non-portable low-level 1/0 definitions.
syslirginfo.h This header file contains structure definitions and prototypes for interrupt request functions.
sys’lkernel.h This header file contains prototypes and pragmas for kernel function calls.
sydImf.h This header file contains structure definitions for load module format.
sys/locking.h This header file contains the manifest constants used by the | ocki ng function.
sysmagic.h Thisheader file contains a definition for the _magi ¢ structure.
sygmman.h This header file contains declarations related to the memory mapping functions.
sys’mouse.h This header file contains structure definitions and prototypes for mouse operations.
sys’/mous_msg.h
This header file contains "private" definitions for the mouse driver.
sys/name.h This header file contains structure definitions and prototypes for QNX "name" functions.
syslosinfo.h This header file contains manifests, structure definitions and prototypes for operating
system information.
sys/osstat.h This header file contains manifests, structure definitions and prototypes for operating
system status information.
sys/prfx.h This header file contains file prefix prototypes.
sys/proc_msg.h
This header file contains process data structures and definitions.
sys/proxy.h This header file contains proxy process prototypes.
sys/psinfo.h This header file contains manifests and structure definitions for process information.
sys/gioctl.h This header files contains manifests and structures for common gnx_ioctl messages.

sys/gnx_glob.h This header file contains a structure definition for the QNX process spawning global data

area.

Header Files 29

Watcom C Library Reference

sys/gnxterm.h This header file contains terminal capability definitions.

sys/sched.h This header file contains manifests and prototypes for process scheduling.
sys/seginfo.h This header file contains segment information data structures.

sys/select.h This header file contains the prototype for the sel ect function.

sys/sendmx.h This header file contains adefinition for _set nx and adefinition of the_nxfer _entry
structure.

sys/ser_msg.h This header file contains "public" serial driver messages.
syd/sidinfo.h This header file contains session information data structures.

sys/stat.h This POSIX header file contains the declarations pertaining to file status, including
definitionsfor the f st at and st at functions and for the structure:

stat describes the information obtained for a directory, file or device
sys/sys msg.h This header file contains standard system message definitions.

sys/timeb.h This header file describesthe t i meb structure used in conjunction with the f ti me
function.

sydtimers.h This POSIX header file contains interval timer definitions from POSIX 1003.4.
sys/times.h This POSIX header file contains process timing definitions from POSIX 1003.1.
sys/trace.h This header file contains trace data structures and definitions.

sys/tracecod.h This header file contains the trace codes used by the Trace() functions.

sys/types.h This POSIX header file contains declarations for the types used by system-level callsto
obtain file status or time information.

sys/uio.h This header file contains declarations related to the readv() and writev() functions.

sys/utsname.h This POSIX header file contains a definition of the ut snane structure and a prototype for
the unare function.

sys/vc.h This header file contains manifests and prototypes for virtual circuit functions.

sysiwait.h This POSIX header file contains manifests and prototypes for "wait" functions.

1.2.3 Header Files Provided for Compatibility

The following headers are included in order to resolve references to items found on other operating
systems. They may be helpful when porting code.

{usrfinclude/ftw.h

30 Header Files

C Library Overview

/usr/includefioctl.h
/usr/includeflibc.h
Jusr/include/sgtty.h
{usr/include/shadow.h
/usr/include/termcap.h
/usr/include/termio.h
{usrfinclude/ustat.h
/usr/include/utmp.h
/usr/include/sys/dir.h
/usrf/include/sysffile.h
/usr/include/sysfioctl.h
/usrfinclude/sys/statfs.h
/usrf/include/sys/termio.h

/usr/include/sys/time.h

1.3 Global Data

Certain dataitems are used by the Watcom C/C++ run-time library and may be inspected (or changed in
some cases) by aprogram. The defined items are:

_amblksiz Prototypein <st dl i b. h>.
Thisunsi gned i nt dataitem contains the increment by which the "break" pointer for
memory allocation will be advanced when there is no freed block large enough to satisfy a
request to allocate a block of memory. This value may be changed by a program at any
time.

Global Data 31

Watcom C Library Reference

argc

argv

daylight

environ

errno

fltused

optarg

opterr

optind

optopt

_osmajor

_osminor

stderr

32 Global Data

Prototypein <stdl i b. h>.
Thisi nt item contains the number of arguments passed to mai n.

Prototypein <stdl i b. h>.
Thischar ** item contains a pointer to a vector containing the actual arguments passed
tomai n.

Prototypein <ti me. h>,

Thisunsi gned i nt hasavalue of one when daylight saving time is supported in this
locale and zero otherwise. Whenever atime functioniscalled, the t zset functionis
called to set the value of the variable. The value will be determined from the value of the
TZ environment variable.

Prototypein <stdl i b. h>.
Thischar ** _ near dataitemisapointer to an array of character pointersto the
environment strings.

Prototypein <errno. h>.

Thisi nt item contains the number of the last error that was detected. The run-time library
never resets er r no to 0. Symbolic names for these errors are found in the <er r no. h>
header file. See the descriptionsfor the per r or and st r er r or functions for
information about the text which describes these errors.

The C compiler places areferencetothe f | t used_ symbol into any module that uses a
floating-point library routine or library routine that requires floating-point support (e.g., the
useof af | oat or doubl e asan argument to the pri nt f function).

Prototypein <uni st d. h>.
Thischar * variable contains a pointer to an option-argument parsed by the get opt
function.

Prototypein <uni st d. h>.

Thisi nt variable controls whether the get opt function will print error messages. The
default value is non-zero and will cause the get opt function to print error messages on
the console.

Prototypein <uni st d. h>.
Thisi nt variable holds the index of the argument array element currently processed by the
get opt function.

Prototypein <uni st d. h>.
Thisi nt variable contains the unrecognized option character in case the get opt function
returns an error.

Prototypein <st dl i b. h>.
Thisunsi gned char variable contains the major number for the version of QNX
executing on the computer. |f the current version is 4.10, then the value will be 4.

Prototypein <stdl i b. h>.
Thisunsi gned char variable contains the minor number for the version of QNX
executing on the computer. If the current version is 4.10, then the value will be 10.

Prototypein <st di 0. h>.

C Library Overview

Thisvariable (with type FI LE *) indicates the standard error stream (set to the console by
default).

stdin Prototypein <st di 0. h>.
Thisvariable (with type FI LE *) indicates the standard input stream (set to the console
by default).

stdout Prototypein <st di 0. h>.
Thisvariable (with type FI LE *) indicates the standard output stream (set to the console
by default).

timezone Prototypein <ti me. h>.
Thisl ong i nt contains the number of seconds of time that the local time zoneis earlier
than Coordinated Universal Time (UTC) (formerly known as Greenwich Mean Time
(GMT)). Whenever atime function iscalled, the t zset function is called to set the value
of thevariable. The value will be determined from the value of the TZ environment
variable.

tzname Prototypein <ti me. h>.
This array of two pointers to character strings indicates the name of the standard
abbreviation for the time zone and the name of the abbreviation for the time zone when
daylight saving timeisin effect. Whenever atime functioniscalled, the t zset function
iscalled to set the valuesin the array. These values will be determined from the value of
the TZ environment variable.

1.4 The TZ Environment Variable

The TZ environment variableis used to establish the local time zone. The value of the variable is used by
various time functions to compute times relative to Coordinated Universal Time (UTC) (formerly known as
Greenwich Mean Time (GMT)).

The time on the computer should be set to UTC. Usethe QNX dat e command if the timeis not
automatically maintained by the computer hardware.

The TZ environment variable can be set (before the program is executed) by using the QNX expor t
command as follows:

export TZ=PST8PDT

or (during the program execution) by using the set env or put env library functions:

setenv("Tz", "PST8PDT", 1);
put env(" TZ=PST8PDT");

The value of the variable can be obtained by using the get env function:
char *tzval ue;
t.zvél ﬁe = getenv("TZ");

Thet zset function processes the TZ environment variable and sets the global variables dayl i ght
(indicatesif daylight saving timeis supported in the locale), t i mezone (contains the number of seconds

The TZ Environment Variable 33

Watcom C Library Reference

of time difference between the local time zone and Coordinated Universal Time (UTC)), and t znane (a
vector of two pointersto character strings containing the standard and daylight time-zone names).

The value of the TZ environment variable should be set as follows (spaces are for clarity only):
std offset dst offset , rule

The expanded format is as follows:

stdoffset[dst[of fset][,start[/time] ,end[/time]]]

std, dst three or more letters that are the designation for the standard (std) or summer (dst) time
zone. Only stdisrequired. If dst isomitted, then summer time does not apply in this
locale. Upper- and lowercase letters are dllowed. Any characters except for aleading
colon (3), digits, comma. (,), minus (-), plus (+), and ASCII NUL (\0) are allowed.

offset indicates the value one must add to the local time to arrive at Coordinated Universal Time
(UTC). The offset has the form:

hh[:mm[:ss]]

The minutes (mm) and seconds (ss) are optional. The hour (hh) isrequired and may be a
singledigit. The offset following std isrequired. If no offset follows dst, summer timeis
assumed to be one hour ahead of standard time. One or more digits may be used; the value
is always interpreted as a decimal number. The hour may be between 0 and 24, and the
minutes (and seconds) - if present - between 0 and 59. |If preceded by a"-", the time zone
will be east of the Prime Meridian ; otherwise it will be west (which may be indicated by
an optional preceding "+").

rule indicates when to change to and back from summer time. The rule has the form:

date/time,date/time

where the first date describes when the change from standard to summer time occurs and

the second date describes when the change back happens. Each time field describes when,

in current local time, the change to the other time is made.

The format of date may be one of the following:

Jn The Julian day n (1 <= n <= 365). Leap daysare not counted. Thatis, in
all years - including leap years - February 28 is day 59 and March 1 is day

60. Itisimpossible to explicitly refer to the occasional February 29.

n The zero-based Julian day (0 <= n <= 365). Leap yearsare counted, and it
is possible to refer to February 29.

Mm.n.d The d'th day (0 <= d <= 6) of week n of month m of theyear (1 <=n<=5,
1 <=m <= 12, where week 5 means "the last d day in month m" which may
occur in the fourth or fifth week). Week 1 isthe first week in which the
d'th day occurs. Day zero is Sunday.

The time has the same format as offset except that no leading sign ("+" or "-") is allowed.
The default, if timeis omitted, is 02: 00: 00.

34 The TZ Environment Variable

C Library Overview

Whenever ctinme, _ctine, localtime, _|ocaltineornktimeiscaled, thetimezone names
contained in the external variable t zname will be set asif thet zset function had been called. The same
istrueif the 9% directiveof strfti ne isused.

Some examples are:

TZ=EST5EDT Eastern Standard Timeis 5 hours earlier than Coordinated Universal Time (UTC).
Standard time and daylight saving time both apply to thislocale. By default, Eastern
Daylight Time (EDT) is one hour ahead of standard time (i.e., EDT4). Sinceit isnot
specified, daylight saving time starts on the first Sunday of April at 2:00 A.M. and endson
the last Sunday of October at 2:00 A.M. Thisisthe default when the TZ variableisnot set.

TZ=EST5EDT4,M4.1.0/02:00:00,M 10.5.0/02:00: 00
Thisisthe full specification for the default when the TZ variable is not set. Eastern
Standard Time is 5 hours earlier than Coordinated Universal Time (UTC). Standard time
and daylight saving time both apply to thislocale. Eastern Daylight Time (EDT) isone
hour ahead of standard time. Daylight saving time starts on the first (1) Sunday (0) of April
(4) at 2:00 A.M. and ends on the last (5) Sunday (0) of October (10) at 2:00 A.M.

TZ=PST8PDT Pacific Standard Time is 8 hours earlier than Coordinated Universal Time (UTC). Standard
time and daylight saving time both apply to thislocale. By default, Pacific Daylight Time
is one hour ahead of standard time (i.e., PDT7). Sinceit is not specified, daylight saving
time starts on the first Sunday of April at 2:00 A.M. and ends on the last Sunday of
October at 2:00 A.M.

TZ=NST3:30NDT1:30
Newfoundland Standard Time is 3 and 1/2 hours earlier than Coordinated Universal Time
(UTC). Standard time and daylight saving time both apply to thislocale. Newfoundland
Daylight Timeis 1 and 1/2 hours earlier than Coordinated Universal Time (UTC).

TZ=Central Europe Time-2:00

Central European Timeis 2 hours later than Coordinated Universal Time (UTC). Daylight
saving time does not apply in thislocale.

The TZ Environment Variable 35

Watcom C Library Reference

36 The TZ Environment Variable

2 Graphics Library

The Watcom C Graphics Library consists of alarge number of functions that provide graphical image
support under DOS and QNX. This chapter provides an overview of this support. The following topics are
discussed.

* Graphics Functions
* Graphics Adapters
* Classes of Graphics Functions

Environment Functions
Coordinate System Functions
Attribute Functions

Drawing Functions

Text Functions

Graphics Text Functions

Image Manipulation Functions
Font Manipulation Functions
Presentation Graphics Functions

CoNoU~WDNPE

Display Functions
Analyze Functions
Utility Functions

* Graphics Header Files

2.1 Graphics Functions

Graphics functions are used to display graphical images such as lines and circles upon the computer screen.
Functions are a so provided for displaying text along with the graphics output.

2.2 Graphics Adapters

Support is provided for both color and monochrome screens which are connected to the computer using any
of the following graphics adapters:

* IBM Monochrome Display/Printer Adapter (MDPA)
* IBM Color Graphics Adapter (CGA)
* IBM Enhanced Graphics Adapter (EGA)

* IBM Multi-Color Graphics Array (MCGA)

Graphics Adapters 37

Watcom C Library Reference

* IBM Video Graphics Array (VGA)
* Hercules Monochrome Adapter

* SuperVGA adapters (SVGA) supplied by various manufacturers

2.3 Classes of Graphics Functions

The functions in the Watcom C Graphics Library can be organized into a number of classes:

Environment Functions
These functions deal with the hardware environment.

Coordinate System Functions
These functions deal with coordinate systems and mapping coordinates from one system to
another.

Attribute Functions
These functions control the display of graphical images.

Drawing Functions
These functions display graphical images such aslines and ellipses.

Text Functions
These functions deal with displaying text in both graphics and text modes.

Graphics Text Functions
These functions deal with displaying graphics text.

I mage Manipulation Functions
These functions store and retrieve screen images.

Font Manipulation Functions
These functions deal with displaying font based text.

Presentation Graphics Functions
These functions deal with displaying presentation graphics elements such as bar charts and
pie charts.

The following subsections describe these function classes in more detail. Each function in the classis
noted with a brief description of its purpose.

2.3.1 Environment Functions
These functions deal with the hardware environment. The _get vi deoconf i g function returns
information about the current video mode and the hardware configuration. The _set vi deonopde

function selects a new video mode.

Some video modes support multiple pages of screen memory. The visual page (the one displayed on the
screen) may be different than the active page (the one to which objects are being written).

38 Classes of Graphics Functions

Graphics Library

The following functions are defined:

_Qgetactivepage get the number of the current active graphics page

_getvideoconfig get information about the graphics configuration

_getvisualpage get the number of the current visual graphics page

_grstatus get the status of the most recently called graphics library function

_setactivepage set the active graphics page (the page to which graphics objects are
drawn)

_ settextrows set the number of rows of text displayed on the screen

_setvideomode select the video mode to be used

_setvideomoderows select the video mode and the number of text rows to be used

_setvisualpage set the visual graphics page (the page displayed on the screen)

2.3.2 Coordinate System Functions

These functions deal with coordinate systems and mapping coordinates from one system to another. The
Watcom C Graphics Library supports three coordinate systems:

1. Physical coordinates
2. View coordinates
3. Window coordinates

Physical coordinates match the physical dimensions of the screen. The physical origin, denoted (0,0), is
located at the top left corner of the screen. A pixel to the right of the origin has a positive x-coordinate and
apixel below the origin will have a positive y-coordinate. The x- and y-coordinates will never be negative
values.

The view coordinate system can be defined upon the physical coordinate system by moving the origin from
the top left corner of the screen to any physical coordinate (seethe _set vi ewor g function). Inthe view
coordinate system, negative x- and y-coordinates are allowed. The scale of the view and physical
coordinate systemsisidentical (both arein terms of pixels).

The window coordinate system is defined in terms of arange of user-specified values (see the
_setwi ndowfunction). Thesevalues are scaled to map onto the physical coordinates of the screen. This
allows for consistent pictures regardless of the resolution (number of pixels) of the screen.

The following functions are defined:

_getcliprgn get the boundary of the current clipping region

_getphyscoord get the physical coordinates of a point in view coordinates

_getviewcoord get the view coordinates of a point in physical coordinates

_getviewcoord_w get the view coordinates of a point in window coordinates

_getviewcoord_wxy get the view coordinates of a point in window coordinates

_getwindowcoord get the window coordinates of apoint in view coordinates

_setcliprgn set the boundary of the clipping region

_setvieworg set the position to be used as the origin of the view coordinate system

_setviewport set the boundary of the clipping region and the origin of the view
coordinate system

_setwindow define the boundary of the window coordinate system

Classes of Graphics Functions 39

Watcom C Library Reference

2.3.3 Attribute Functions

These functions control the display of graphical images such aslinesand circles. Linesand figuresare
drawn using the current color (seethe _set col or function), the current line style (see the
_setlinestyl e function), the current fill mask (seethe _set fi | | mask function), and the current
plotting action (seethe _set pl ot act i on function).

The following functions are defined:

_getarcinfo
_getbkcolor
_getcolor
_getfillmask
_Qetlinestyle
_getplotaction
_remapallpalette
_remappalette
_selectpalette
_setbkcolor
_setcolor
_setfillmask
_setlinestyle
_Setplotaction

2.3.4 Drawing Functions

get the endpoints of the most recently drawn arc
get the background color

get the current color

get the current fill mask

get the current line style

get the current plotting action
assign colorsfor all pixel values
assign color for one pixel value
select a palette

set the background color

set the current color

set the current fill mask

set the current line style

set the current plotting action

These functions display graphical images such aslines and ellipses. Functions exist to draw straight lines
(seethe _I i net o functions), rectangles (seethe _r ect angl e functions), polygons (seethe _pol ygon
functions), ellipses (seethe _el | i pse functions), elliptical arcs (seethe _ar ¢ functions) and pie-shaped
wedges from ellipses (seethe _pi e functions).

These figures are drawn using the attributes described in the previous section. The functions ending with
_wor_wxy usethewindow coordinate system; the others use the view coordinate system.

The following functions are defined:

_arc
_arcw

_arc_wxy
_clearscreen

_dlipse

_dlipse w

_dlipse wxy

_floodfill

_floodfill_w
_(Qetcurrentposition
_Qgetcurrentposition_w
_Qetpixel

_Qetpixel_w

_lineto

draw an arc

draw an arc using window coordinates

draw an arc using window coordinates

clear the screen and fill with the background color

draw an €ellipse

draw an €ellipse using window coordinates

draw an €ellipse using window coordinates

fill an area of the screen with the current color

fill an area of the screen in window coordinates with the current color
get the coordinates of the current output position

get the window coordinates of the current output position
get the color of the pixel at the specified position

get the color of the pixel at the specified position in window
coordinates

draw aline from the current position to a specified position

40 Classes of Graphics Functions

Graphics Library

lineto w

_moveto
_moveto_w
_pie

_pie w
_pie_wxy
_polygon
_polygon_w
_polygon_wxy
_rectangle
_rectangle w
_rectangle_wxy
_setpixel
_setpixel_w

2.3.5 Text Functions

draw aline from the current position to a specified position in window
coordinates

set the current output position

set the current output position using window coordinates

draw awedge of a"pie"

draw awedge of a"pie" using window coordinates

draw awedge of a"pie" using window coordinates

draw a polygon

draw a polygon using window coordinates

draw a polygon using window coordinates

draw arectangle

draw arectangle using window coordinates

draw arectangle using window coordinates

set the color of the pixel at the specified position

set the color of the pixel at the specified position in window coordinates

These functions deal with displaying text in both graphics and text modes. Thistype of text output can be

displayed in only one size.

Thistext isdisplayed usingthe _out t ext and__out memfunctions. The output position for text follows
the last text that was displayed or can bereset (seethe _set t ext posi ti on function). Text windows
can be created (seethe _set t ext wi ndow function) in which the text will scroll. Text is displayed with
the current text color (seethe _set t ext col or function).

The following functions are defined:

_clearscreen
_displaycursor

_getbkcolor
_gettextcolor
_gettextcursor
_Qgettextposition
_gettextwindow
_outmem
_outtext
_scrolltextwindow
_setbkcolor

_ settextcol or

_ Settextcursor

_ Settextposition
_settextwindow
_wrapon

2.3.6 Graphics Text Functions

clear the screen and fill with the background color
determine whether the cursor isto be displayed after a graphics function
completes execution

get the background color

get the color used to display text

get the shape of the text cursor

get the current output position for text

get the boundary of the current text window

display atext string of a specified length

display atext string

scroll the contents of the text window

set the background color

set the color used to display text

set the shape of the text cursor

set the output position for text

set the boundary of the region used to display text
permit or disallow wrap-around of text in atext window

These functions deal with displaying graphicstext. Graphicstext is displayed as a sequence of line
segments, and can be drawn in different sizes (seethe _set char si ze function), with different
orientations (seethe _set t ext ori ent function) and alignments (seethe _set t ext al i gn function).

Classes of Graphics Functions 41

Watcom C Library Reference

The functions ending with _ w use the window coordinate system; the others use the view coordinate

system.

The following functions are defined:

_gettextextent
_ gettextsettings
_grtext
_grtext w
_setcharsize
_setcharsize w

_setcharspacing
_setcharspacing_w

_Settextalign
_settextorient
_settextpath

get the bounding rectangle for a graphics text string

get information about the current settings used to display graphics text
display graphics text

display graphics text using window coordinates

set the character size used to display graphics text

set the character size in window coordinates used to display graphics
text

set the character spacing used to display graphics text

set the character spacing in window coordinates used to display
graphics text

set the alignment used to display graphics text

set the orientation used to display graphics text

set the path used to display graphics text

2.3.7 Image Manipulation Functions

These functions are used to transfer screen images. The _get i nage function transfers a rectangular
image from the screen into memory. The _put i mage function transfers an image from memory back
onto the screen. The functions ending with _wor _wxy use the window coordinate system; the others use

the view coordinate system.

The following functions are defined:

_getimage
_getimage w

_getimage wxy

_imagesize
_imagesize w
_imagesize wxy
_putimage
_putimage w

store an image of an area of the screen into memory

store an image of an area of the screen in window coordinates into
memory

store an image of an area of the screen in window coordinates into
memory

get the size of a screen area

get the size of a screen areain window coordinates

get the size of a screen areain window coordinates

display an image from memory on the screen

display an image from memory on the screen using window coordinates

2.3.8 Font Manipulation Functions

42

These functions are for the display of fonts compatible with Microsoft Windows. Fonts are contained in
fileswith an extension of . FON. Before font based text can be displayed, the fonts must be registered with
the regi st erfonts function, and afont must be selected withthe _set f ont function.

Classes of Graphics Functions

Graphics Library

The following functions are defined:

_getfontinfo get information about the currently selected font
_Qetgtextextent get the length in pixels of atext string

_getgtextvector get the current value of the font text orientation vector
_outgtext display astring of text in the current font
_registerfonts initialize the font graphics system

_setfont select afont from among the registered fonts
_setgtextvector set the font text orientation vector

_unregisterfonts frees memory allocated by the font graphics system

2.3.9 Presentation Graphics Functions

These functions provide a system for displaying and manipulating presentation graphics elements such as
bar charts and pie charts. The presentation graphics functions can be further divided into three classes:

Display Functions
These functions are for the initialization of the presentation graphics system and the
displaying of charts.

Analyze Functions
These functions calculate default values for chart elements without actually displaying the
chart.

Utility Functions
These functions provide additional support to control the appearance of presentation
graphics elements.

The following subsections describe these function classes in more detail. Each function in the classis
noted with a brief description of its purpose.

2.3.9.1 Display Functions

These functions are for the initialization of the presentation graphics system and the displaying of charts.
The _pg_ini tchart functioninitializes the system and should be the first presentation graphics
function called. The single-series functions display a single set of data on a chart; the multi-series functions
(those ending with ms) display several sets of data on the same chart.

The following functions are defined:

_pg_chart display abar, column or line chart

_pg_chartms display amulti-series bar, column or line chart
_pg_chartpie display apie chart

_pg_chartscatter display a scatter chart

_pg_chartscatterms display a multi-series scatter chart

_pg_defaultchart initialize the chart environment for a specific chart type
_pg_initchart initialize the presentation graphics system

Classes of Graphics Functions 43

Watcom C Library Reference

2.3.9.2 Analyze Functions

These functions calcul ate default values for chart elements without actually displaying the chart. The
functions ending with ns analyze multi-series charts; the others analyze single-series charts.

The following functions are defined:

_pg_analyzechart
_pg_analyzechartms
_pg_analyzepie
_pg_analyzescatter
_pg_analyzescatterms

2.3.9.3 Utility Functions

analyze a bar, column or line chart

analyze a multi-series bar, column or line chart
analyze a pie chart

analyze a scatter chart

analyze a multi-series scatter chart

These functions provide additional support to control the appearance of presentation graphics elements.

The following functions are defined:

_pg_getchardef
_pg_getpalette

_pg_getstyleset

_pg_hlabelchart
_pg_resetpalette
_pg_resetstyleset
_pg_setchardef
_pg_setpalette

_pg_setstyleset

_pg_viabelchart

get bit-map definition for a specific character

get presentation graphics palette (colors, line styles, fill patterns and
plot characters)

get presentation graphics style-set (line styles for window borders and
grid lines)

display text horizontally on achart

reset presentation graphics palette to default values

reset presentation graphics style-set to default values

set bit-map definition for a specific character

set presentation graphics palette (colors, line styles, fill patterns and plot
characters)

set presentation graphics style-set (line styles for window borders and
grid lines)

display text vertically on a chart

2.4 Graphics Header Files

All program modules which use the Graphics Library should include the header file gr aph. h. Thisfile
contains prototypes for all the functionsin the library as well as the structures and constants used by them.

Modules using the presentation graphics functions should also include the header file pgchart . h.

44 Graphics Header Files

3 Library Functions and Macros

Each of the functions or macros in the C Library is described in this chapter. Each description consists of a
number of subsections:

Synopsis: This subsection gives the header files that should be included within a source file that references the
function or macro. It aso shows an appropriate declaration for the function or for afunction that could be
substituted for amacro. Thisdeclaration is not included in your program; only the header file(s) should be
included.

When a pointer argument is passed to a function and that function does not modify the item indicated by
that pointer, the argument is shown with const before the argument. For example,

const char *string

indicates that the array pointed at by string is not changed.
Constraints: This subsection describes Runtime-constraints for Safer C Library functions.
Safer C: This subsection pointsto the Safer C version of the described "unsafe” function.
Description: This subsection is adescription of the function or macro.
Returns. This subsection describes the return value (if any) for the function or macro.
Errors: This subsection describes the possible er r no values.
See Also: Thisoptional subsection providesalist of related functions or macros.

Example: This optional subsection consists of one or more examples of the use of the function. The examples are
often just fragments of code (not complete programs) for illustration purposes.

Classification: This subsection provides an indication of where the function or macro is commonly found. The
following notation is used:

ANS These functions or macros are defined by the ANSI/ISO C standard.

I ntel These functions or macros are neither ANSI/ISO nor POSIX. It performs afunction
related to the Intel x86 architecture. 1t may be found in other implementations of C
for personal computers using Intel chips. Use these functions with caution, if
portability is a consideration.

POSIX 1003.1 The functions or macros are not defined by the ANSI/ISO C standard. These
functions are specified in the document | EEE Sandard Portable Operating System
Interface for Computer Environments (IEEE Draft Standard 1003.1-1990).

POSIX 1003.2 These functions or macros are not defined by the ANSI/ISO C standard. These
functions are specified in the document Shell and Utility Application Interface for

Library Functions and Macros 45

Watcom C Library Reference

POSIX 1003.4

QNX

UNIX

WATCOM

TR 24731

Computer Operating System Environments (IEEE Computer Society Working Group
1003.2).

These functions or macros are not defined by the ANSI/ISO C standard. These
functions are specified in the document Realtime Extensions for Computer Operating
System Environments (IEEE Computer Society Working Group 1003.4).

These functions or macros are neither ANSI/ISO nor POSIX. They perform a
function related to QNX. They may be found in other implementations of C for
personal computers with QNX. Use these functions with caution, if portability isa
consideration.

These functions exist on some UNIX systems but are outside of the POSIX or
ANSI/ISO standards.

These functions or macros are neither ANSI/ISO nor POSIX. They may be found in
other implementations of the C language, but caution should be used if portability isa
consideration.

These functions are "safer" versions of normal C library functions. They perform
more checks on parameters and should be used in preference over their "unsafe"
version.

Systems: This subsection provides an indication of where the function or macro is supported. The following notation

is used:

All

DOS

DOS/16

D0OS/32

DOSPM

MACRO

Math

Netware

0S/21.x

Thisfunction isavailable on all systems (we do not include Netware or DOS/PM in
this category).

This function is available on both 16-bit DOS and 32-bit extended DOS.
Thisfunction is available on 16-bit, real-mode DOS.

This function is available on 32-bit, protected-mode extended DOS.

This 16-bit DOS protected-mode function is supported under Phar Lap’s
286|DOS-Extender "RUN286". The function isfound in one of Watcom’s 16-bit
protected-mode DOS libraries (DOSPM*.LIB under the 16-bit OS2 subdirectory).
Thisfunction isimplemented as a macro (#define) on all systems.

This function isamath function. Math functions are available on all systems.

This function is available on the 32-bit Novell Netware operating system.

Thisfunction isavailable on IBM 0OS/2 1.x, a 16-hit protected-mode system for Intel
80286 and upwards compatible systems.

When "(MT)" appears after OS2, it refersto the CLI BMTL library which supports
multi-threaded applications.

When "(DL)" appears after OS/2, it refersto the CLI BDLL library which supports
creation of Dynamic Link Libraries.

46 Library Functions and Macros

Library Functions and Macros

085/2-32

QNX
QNX/16
QNX/32
Windows

Win386

Win32

When " (all)" appears after "OS/2 1", it means al versions of the OS/2 1.x libraries.
If afunction is missing from the OS2 library, it may be found in Watcom’ s 16-bit
protected-mode DOS libraries (DOSPM*.LIB) for Phar Lap’s 286|DOS-Extender
(RUN286).

This function is available on 32-bit IBM OS/2, a protected-mode system for Intel
80386 and upwards compatible systems.

Thisfunction is available on QNX Software Systems' 16 or 32-bit operating systems.
Thisfunction is available on QNX Software Systems’ 16-bit operating system.
Thisfunction is available on QNX Software Systems’ 32-bit operating system.

This function is available on 16-bit, protected-mode Windows 3.x.

Thisfunction is available on Microsoft Windows 3.x, using Watcom’s Windows
Extender for 32-hit protected-mode applications running on Intel 386 or upward
compatible systems.

This function is available on 32-bit Microsoft Windows platforms (Windows 95,

Windows 98, Windows NT, Windows 2000, etc.). It may aso be available for
Windows 3.x using Win32s support.

Library Functions and Macros 47

abort

Synopsis: #i nclude <stdlib. h>
void abort(void);

Description: Theabort function raisesthe signal SIGABRT. The default action for SIGABRT isto terminate
program execution, returning control to the process that started the calling program (usually the
operating system). The status unsuccessful termination is returned to the invoking process by means of
the function call r ai se(SI GABRT) . Under QNX, the status valueis 12.

Returns: Theabort function does not return to its caller.

See Also: atexit, bgetcnd,cl ose,exec...,exit, Exit, exit,getcnd,getenv, nain,
onexi t, put env, si gnal ,spawn...,systemwait

Example: #i nclude <stdlib. h>

void main()

{
int major_error = 1;
if(major_error)
abort ();
}
Classification: ANS
Systems: All, Netware

48 Library Functions and Macros

abort_handler s

Synopsis:

Description:

Returns:
See Also:

Example:

Classification:

Systems:

#define __STDC WANT_LIB EXT1__ 1

#i ncl ude <stdlib. h>

voi d abort handl er _s(
const char * restrict nsg,
void * restrict ptr,
errno_t error);

Theabort _handl er _s function may be passed as an argument to the
set _constrai nt_handl er _s function. It writes amessage on the standard error stream in the
following format:
Runti ne-constraint violation: <nsg>
Theabort _handl er _s function then callstheabor t function.
Theabort handl er _s function does not return to its caller.
i gnore_handl er _s,set_constraint_handl er_s
#define __STDC WANT_LIB EXT1__ 1
#i nclude <stdlib. h>

#i ncl ude <stdi o. h>

void main(void)

{
constraint _handler _t ol d_handl er;
ol d_handl er = set_constraint_handl er _s(abort_handler_s);
i f(getenv_s(NULL, NULL, 0, NULL)) {
printf("getenv_s failed\n");
}
set _constraint_handl er_s(old_handler);
}

produces the following:

Runti me-constraint violation: getenv_s, name == NULL.
ABNORVAL TERM NATI ON

TR 24731

All, Netware

Library Functions and Macros 49

abs

Synopsis: #i nclude <stdlib. h>
int abs(int |);

Description: The abs function returns the absolute value of its integer argument j.

Returns: The abs function returns the absolute value of its argument.
See Also: | abs, || abs,i maxabs, f abs
Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

void main(void)

{
printf("% % %\n", abs(-5), abs(0), abs(5));

produces the following:
505
Classification: 1SO C90

Systems: All, Netware

50 Library Functions and Macros

acos

Synopsis: #i ncl ude <math. h>
doubl e acos(double x);

Description: Theacos function computes the principal value of the arccosine of x. A domain error occurs for
arguments not in the range [-1,1].

Returns: The acos function returns the arccosine in the range [0,1]. When the argument is outside the
permissible range, the mat her r functioniscalled. Unlessthe default mat her r function is replaced,

it will set the global variable er r no to EDOM and print a"DOMAIN error" diagnostic message using
thest derr stream.

See Also: asi n, at an, at an2, mat herr

Example: #i ncl ude <stdio. h>
#i ncl ude <math. h>

void main()

printf("%\n", acos(.5));
}

produces the following:

1.047197
Classification: ANSI

Systems: Math

Library Functions and Macros 51

acosh

Synopsis: #i ncl ude <math. h>
doubl e acosh(double x);

Description: Theacosh function computes the inverse hyperbolic cosine of x. A domain error occursif the value of
xislessthan 1.0.

Returns: The acosh function returns the inverse hyperbolic cosine value. When the argument is outside the
permissible range, the mat her r functioniscalled. Unlessthe default mat her r function is replaced,
it will set the global variable er r no to EDOM and print a"DOMAIN error" diagnostic message using
thest derr stream.

See Also; asi nh, at anh, cosh, mat herr

Example: #i ncl ude <stdio. h>
#i ncl ude <math. h>

void main()

printf("%\n", acosh(1.5));
}

produces the following:

0. 962424
Classification: WATCOM

Systems: Math

52 Library Functions and Macros

alloca

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <mal | oc. h>
void *alloca(size t size);

Theal | oca function allocates space for an object of size bytes from the stack. The allocated space is
automatically discarded when the current function exits. The al | oca function should not be used in
an expression that is an argument to a function.

Theal | oca function returns a pointer to the start of the allocated memory. The return valueis NULL
if there isinsufficient stack space available.

cal | oc, mal | oc, st ackavai |

#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <mal | oc. h>
FI LE *open_err_file(char *);

voi d main()
FI LE *fp;
fp = open_err_file("alloca");
i f

(fp == NULL) {
printf("Unable to open error file\n");

} else {
fclose(fp);
}
}
FI LE *open_err_file(char *name)
{
char *buffer;
/* allocate tenp buffer for file name */
buffer = (char *) alloca(strlen(name) + 5);
if(buffer) {
sprintf(buffer, "%.err", nanme);
return(fopen(buffer, "w));
}
return((FILE *) NULL);
}

Classification: WATCOM

Systems:

MACRO

Library Functions and Macros 53

_arc Functions

Synopsis: #i ncl ude <graph. h>
short _FAR _arc(short x1, short y1,
short x2, short y2,
short x3, short y3,
short x4, short y4);

short _FAR _arc_wW doubl e x1, double yl1,
doubl e x2, double y2,
doubl e x3, double y3,
doubl e x4, double y4);

short _FAR _arc_wxy(struct _wxycoord _FAR *pl,
struct _wxycoord _FAR *p2,
struct _wxycoord _FAR *p3,
struct _wxycoord FAR *p4);

Description: The _ar ¢ functions draw elliptical arcs. The _ar ¢ function uses the view coordinate system. The
_arc_wand_ar c_wxy functions use the window coordinate system.

The center of the arc isthe center of the rectangle established by the points (x1, y1) and (x2, y2).
The arc is a segment of the ellipse drawn within this bounding rectangle. The arc starts at the point on
this ellipse that intersects the vector from the centre of the ellipse to the point (x3, y3) . Thearc ends
at the point on this ellipse that intersects the vector from the centre of the ellipse to the point

(x4, y4). Thearcisdrawn in acounter-clockwise direction with the current plot action using the
current color and the current line style.

The following pictureillustrates the way in which the bounding rectangle and the vectors specifying the
start and end points are defined.

- J

When the coordinates (x1, y1) and (x2, y2) establish aline or a point (this happens when one or
more of the x-coordinates or y-coordinates are equal), nothing is drawn.

54 Library Functions and Macros

_arc Functions

The current output position for graphics output is set to be the point at the end of the arc that was drawn.

Returns: The _ar c functions return a non-zero value when the arc was successfully drawn; otherwise, zero is
returned.
See Also: _ellipse, pie, rectangle, getarcinfo,_setcol or, setlinestyle,

_setplotaction

Example: #i ncl ude <coni o. h>
#i ncl ude <graph. h>

mai n()
{
_setvideonode(_VRES16COLCR);
_arc(120, 90, 520, 390, 500, 20, 450, 460);
getch();
_setvideonode(_ DEFAULTMODE);
}

produces the following:

4 N\

- J

Classification: PC Graphics
Systems: _arc - DCS, QNX

_arc_w - DOS, ONX
_arc_wxy - DOS, QNX

Library Functions and Macros 55

asctime Functions

Synopsis:

Safer C:

Description:

Returns:

See Also:

Example:

#i nclude <time. h>

char * asctine(const struct tm*tineptr);

char *_asctine(const struct tm*tineptr, char *buf);

wchar _t * _wasctinme(const struct tm*tineptr);

wchar _t * wasctinme(const struct tm*tinmeptr, wchar_t *buf);

struct tm{

int tm sec; /* seconds after the mnute -- [0, 61] */
int tmmnmn; /* mnutes after the hour -- [0,59] */
int tmhour; /* hours after m dnight -- [0,23] */
int tmnday; /* day of the nonth -- [1,31] */
int tm non; /* nonths since January -- [0,11] */
int tmyear; /* years since 1900 */
int tmwlay; /* days since Sunday -- [0,6] */
int tmyday; /* days since January 1 -- [0, 365]*/
i

nt tmisdst; /* Daylight Savings Tinme flag */
1

The Safer C Library extension provides the function which is a safer aternative to asctime. This newer
ascti me_s function is recommended to be used instead of the traditional "unsafe" asctime function.

The asctime functions convert the time information in the structure pointed to by timeptr into astring
containing exactly 26 characters. This string has the form shown in the following example:

Sat Mar 21 15:58:27 1987\ n\0

All fields have a constant width. The new-line character \ n’ and the null character * \ 0’ occupy the
last two positions of the string.

The ANSI function asctime places the result string in a static buffer that is re-used each time asctime or
cti neiscalled. Thenon-ANSI function _asct i me placesthe result string in the buffer pointed to
by buf.

The wasctinmeand __wascti ne functionsareidentical to theirasct i ne and _ascti ne
counterparts except that they deal with wide-character strings.

The asctime functions return a pointer to the character string result.

cl ock, cti me Functions, di fftinme,gmine,localtine, nktinme,strftine,tine,
tzset

#i ncl ude <stdi o. h>
#i ncl ude <tine. h>

voi d main()

struct tm tinme_of day;
time_t [time;
auto char buf[26];

time(&time);

_localtime(&tinme, &ime_of day);

printf("Date and tine is: %\n",
_asctime(& ine_of day, buf));

56 Library Functions and Macros

asctime Functions

produces the following:

Date and tinme is: Sat Mar 21 15:58:27 1987

Classification: asctimeis ANS|
_asctimeisnot ANSI
_wasctimeis not ANSI
__wasctimeisnot ANSI

Systems: asctime - All, Netware
_asctime - Al, Netware
_wasctine - Al
__wasctime - Al

Library Functions and Macros 57

asin

Synopsis: #i ncl ude <math. h>
doubl e asin(double x);

Description: Theasi n function computes the principal value of the arcsine of x. A domain error occurs for
arguments not in the range [-1,1].

Returns: Theasi n function returns the arcsine in the range [-172,17/2]. When the argument is outside the
permissible range, the mat her r functioniscalled. Unlessthe default mat her r function is replaced,

it will set the global variable er r no to EDOM and print a"DOMAIN error" diagnostic message using
thest derr stream.

See Also; acos, at an, at an2, mat herr

Example: #i ncl ude <stdio. h>
#i ncl ude <math. h>

void main()

printf("%\n", asin(.5));
}

produces the following:

0. 523599
Classification: ANSI

Systems: Math

58 Library Functions and Macros

asinh

Synopsis:

Description:
Returns:
See Also:

Example:

Classification:

Systems:

#i ncl ude <mat h. h>
doubl e asi nh(double x);

Theasi nh function computes the inverse hyperbolic sine of x.

Theasi nh function returns the inverse hyperbolic sine value.
acosh, at anh, si nh, mat herr

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

voi d main()

printf("%\n", asinh(0.5));

produces the following:
0. 481212
WATCOM

Math

Library Functions and Macros

59

assert

Synopsis:

Description:

Returns:

Example:

Classification:

Systems:

#i ncl ude <assert. h>
void assert(int expression);

Theassert macro prints adiagnostic message upon the st der r stream and terminates the program
if expression isfalse (0). The diagnostic message has the form

Assertion failed: expression, fil e filename, | i ne linenumber

where filename is the name of the source file and linenumber is the line number of the assertion that
failed in the sourcefile. Filename and linenumber are the values of the preprocessing macros
__FILE__and _LINE__ respectively. No actionistaken if expression istrue (non-zero).

Theassert macroistypically used during program development to identify program logic errors.

The given expression should be chosen so that it is true when the program is functioning as intended.
After the program has been debugged, the special "no debug" identifier NDEBUG can be used to remove
assert calsfrom the program when it isre-compiled. If NDEBUGIs defined (with any value) with a
- d command line option or with a #def i ne directive, the C preprocessor ignoresall assert calsin
the program source.

Theassert macro does not return avaue.

#i ncl ude <stdi o. h>
#i ncl ude <assert. h>

voi d process_string(char *string)

{
/* use assert to check argunent */
assert(string != NULL);
assert(*string '="\0");
/* rest of code follows here */
}

void main()
process_string("hello");
process_string("");

}

ANSI

MACRO

60 Library Functions and Macros

atan

Synopsis: #i ncl ude <math. h>
doubl e atan(double x);

Description: The at an function computes the principal value of the arctangent of x.

Returns: The at an function returns the arctangent in the range (-172,102).
See Also: acos, asi n, at an2
Example: #i ncl ude <stdio. h>

#i ncl ude <mat h. h>
voi d main()

printf("%\n", atan(.5));

produces the following:
0. 463648
Classification: ANSI

Systems: Math

Library Functions and Macros 61

atan2

Synopsis: #i ncl ude <math. h>
doubl e atan2(double y, double x);

Description: The at an2 function computes the principal value of the arctangent of y/x, using the signs of both
arguments to determine the quadrant of the return value. A domain error occursif both arguments are
zero.

Returns: The at an2 function returns the arctangent of y/x, in the range (-1,77). When the argument is outside the
permissible range, the mat her r functioniscalled. Unlessthe default mat her r function is replaced,
it will set the global variable er r no to EDOM and print a"DOMAIN error" diagnostic message using
thest derr stream.

See Also: acos, asi n, at an, mat herr

Example: #i ncl ude <stdio. h>
#i ncl ude <mat h. h>

void main()

printf("%\n", atan2(.5, 1.));

produces the following:

0. 463648
Classification: ANSI

Systems: Math

62 Library Functions and Macros

atanh

Synopsis: #i ncl ude <math. h>
doubl e atanh(double x);

Description: The at anh function computes the inverse hyperbolic tangent of x. A domain error occurs if the value
of x isoutside the range (-1,1).

Returns: The at anh function returns the inverse hyperbolic tangent value. When the argument is outside the
permissible range, the mat her r functioniscalled. Unlessthe default mat her r function is replaced,

it will set the global variable er r no to EDOM and print a"DOMAIN error" diagnostic message using
thest derr stream.

See Also; acosh, asi nh, mat herr, t anh

Example: #i ncl ude <stdio. h>
#i ncl ude <mat h. h>

void main()

printf("%\n", atanh(0.5));
}

produces the following:

0. 549306
Classification: WATCOM

Systems: Math

Library Functions and Macros 63

atexit

Synopsis: #i nclude <stdlib. h>
int atexit(void (*func)(void));

Description: Theat exi t function is passed the address of function func to be called when the program terminates
normally. Successivecallsto at exi t createalist of functions that will be executed on a"last-in,
first-out" basis. No more than 32 functions can be registered with the at exi t function.

The functions have no parameters and do not return values.

Returns: Theat exi t function returns zero if the registration succeeds, non-zero if it fails.
See Also: abort, exit,exit
Example: #i ncl ude <stdio. h>

#i nclude <stdlib. h>

void main()
extern void funcl(void), func2(void), func3(void);
atexit(funcl);
atexit(func2);

atexit(func3);
printf("Do this first.\n");

}

void funcl(void) { printf("last.\n"); }
voi d func2(void) { printf("this "); }
void func3(void) { printf("Do "); }
produces the following:

Do this first.
Do this |ast.

Classification: ANSI

Systems: All, Netware

64 Library Functions and Macros

atof, _wtof

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i nclude <stdlib. h>
doubl e atof(const char *ptr);
double _wof(const wchar_t *ptr);

The at of function converts the string pointed to by ptr to doubl e representation. It isequivaent to

strtod(ptr, (char **)NULL)

The _wt of functionisidentical to at of except that it accepts awide-character string argument. Itis
equivalent to

westod(ptr, (wchar _t **)NULL)

Theat of function returns the converted value. Zero is returned when the input string cannot be
converted. Inthiscase, er r no isnot set. When an error has occurred, er r no contains avalue
indicating the type of error that has been detected.

sscanf,strtod
#i ncl ude <stdlib. h>
voi d main()

doubl e x;

x = atof ("3.1415926");
}

atof isANSI
_wtof isnot ANSI

atof - Math
_wof - Math

Library Functions and Macros 65

atoi, _wtoi

Synopsis: #i nclude <stdlib. h>
int atoi (const char *ptr);
int _wtoi(const wchar_t *ptr);
Description: Theat oi function converts the string pointed to by ptr to i nt representation.
The _wt oi functionisidentical to at oi except that it accepts awide-character string argument.

Returns: The at oi function returns the converted value.

See Also: atol ,atoll,itoa,ltoa,lltoa,sscanf,strtol,strtoll,strtoul,strtoull,
strtoi max, strtoumax, ul toa,ul |t oa, utoa

Example: #i nclude <stdlib. h>
void main()
int x;

X = atoi ("-289");
}

Classification: atoi isSANSI
_wtoi isnot ANSI

Systems: atoi - All, Netware
_woi - Al

66 Library Functions and Macros

atol, _wtol

Synopsis: #i nclude <stdlib. h>
long int atol (const char *ptr);
long int wtol(const wchar _t *ptr);
Description: Theat ol function converts the string pointed to by ptr to | ong i nt representation.
The _wt ol functionisidentical to at ol except that it accepts awide-character string argument.

Returns: The at ol function returns the converted value.

See Also: atoi ,atoll,itoa,ltoa,lltoa,sscanf,strtol,strtoll,strtoul,strtoull,
strtoi max, strtoumax, ul toa,ul |t oa, utoa

Example: #i nclude <stdlib. h>
void main()
long int x;

X = atol ("-289");
}

Classification: atol isANSI
_wtol isnot ANSI

Systems: atol - All, Netware
_wol - Al

Library Functions and Macros 67

atoll, _wtoll

Synopsis: #i nclude <stdlib. h>
long long int atoll(const char *ptr);
long long int _wtoll(const wchar _t *ptr);

Description: Theat ol | function converts the string pointed to by ptr to | ong | ong i nt representation.
The _wt ol | functionisidentical to at ol | except that it accepts awide-character string argument.

Returns: Theat ol | function returns the converted value.

See Also: atoi ,atol ,itoa,ltoa,lltoa,sscanf,strtol ,strtoll,strtoul,strtoul |,
strtoi max, strtoumax, ul toa,ul |t oa, utoa

Example: #i nclude <stdlib. h>
void main()
long int x;

x = atoll("-289356768201");
}

Classification: atoll isANSI
_wtoll isnot ANSI

Systems: atoll - Al, Netware
_woll - Al

68 Library Functions and Macros

_atouni

Synopsis: #i nclude <stdlib. h>
wchar _t * _atouni (wchar_t *wcs, const char *sbcs);

Description: The _at ouni function converts the string pointed to by sbes to awide-character string and placesit in
the buffer pointed to by wcs.

The conversion ends at the first null character.

Returns: The _at ouni function returns the first argument as aresult.
See Also: atoi,atol,itoa,ltoa,strtod,strtol,strtoul,ultoa,utoa
Example: #i nclude <stdlib. h>

void main()
wchar _t wes[12];

_atouni (wcs, "Hello world");

}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 69

basename

Synopsis: #i ncl ude <l i bgen. h>
char *basenane(char *path);

Description: The basenane function returns a pointer to the final component of a pathname pointed to by the path
argument, deleting trailing path separators.

If the string pointed to by path consists entirely of path separators, a string consisting of single path
separator is returned.

If path isanull pointer or points to an empty string, a pointer to the string "." is returned.

The basenane function may modify the string pointed to by path and may return a pointer to static
storage that may be overwritten by a subsequent call to basenarre.

The basenane function is not re-entrant or thread-safe.

Returns: The basenane function returns a pointer to the final component of path.
See Also: di r nanme
Example: #i ncl ude <stdio. h>

#i ncl ude <l i bgen. h>

int main(void)

{
puts(basenanme("/usr/lib"));
puts(basenane(“//usr//lib//"));
puts(basenane("///"));
puts(basenane("foo"));
puts(basename(NULL));
return(0);

}

produces the following:

lib

[ib

/

foo

Classification: POSIX

Systems: All, Netware

70 Library Functions and Macros

bessel Functions

Synopsis:

Description:

Returns:
See Also:

Example:

Classification:

Systems:

#i ncl ude <mat h. h>

doubl e j O(
doubl e j 1(
doubl e j n(
doubl e yO(
doubl e y1(

double x);
double x);
int n, double x);
double x);
double x);

double yn(int n, double x);

Functionsj 0, 1, andj n return Bessel functions of the first kind.

Functions y0, y1, and yn return Bessel functions of the second kind. The argument x must be positive.
If xisnegative, _nmat her r will be called to print aDOMAIN error messageto st derr, seterrnoto
EDOM and return the value - HUGE_VAL. Thiserror handling can be modified by using the mat her r
routine.

These functions return the result of the desired Bessel function of x.
mat herr

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

voi d main()

double x, vy, z;

%, y1(1.58) =
= %\n", z);

%\n", X,

)
.4) = y),
2

}

WATCOM

- Math
Mat h
- Math
Mat h
vat h
Mat h

Library Functions and Macros 71

bcmp

Synopsis: #i ncl ude <string. h>
int bcnp(const void *s1, const void *s2, size_ t n);

Description: The bcnp function compares the byte string pointed to by sl to the string pointed to by s2. The number
of bytesto compare is specified by n. Null characters may be included in the comparision.

Note that this function is similar to the ANSI nmencnp function but just tests for equality (new code
should use the ANSI function).

Returns: The benp function returns zero if the byte strings are identical otherwise it returns 1.
See Also: bcopy, bzer o, nencnp, strcnp
Example: #i ncl ude <stdio. h>

#i ncl ude <string. h>
void main()
if(bcnmp("Hello there", "Hello world", 6)) {
printf("Not equal\n");
} else {
printf("Equal\n");
}
}
produces the following:
Equal
Classification: WATCOM

Systems: All, Netware

72 Library Functions and Macros

bcopy

Synopsis:

Description:

Returns:
See Also:

Example:

Classification:

Systems:

#i ncl ude <string. h>
voi d bcopy(const void *src, void *dst, size t n);

The bcopy function copies the byte string pointed to by src (including any null characters) into the
array pointed to by dst. The number of bytesto copy is specified by n. Copying of overlapping objects
is guaranteed to work properly.

Note that this function is similar to the ANSI nmermrmove function but the order of argumentsis different
(new code should use the ANSI function).

The bcopy function has no return value.
bcnp, bzer o, nermove, strcpy

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

void main()
{
auto char buffer[80];
bcopy("Hello ", buffer, 6);
bcopy("world", &buffer[6], 6);
printf("%\n", buffer);
}

produces the following:
Hello world
WATCOM

All, Netware

Library Functions and Macros 73

_bfreeseg

Synopsis: #i ncl ude <mal |l oc. h>
int bfreeseg(__ segnent seg);

Description: The _bf r eeseg function frees a based-heap segment.

The argument seg indicates the segment returned by an earlier call to _bheapseg.

Returns: The _bf r eeseg function returns 0 if successful and -1 if an error occurred.
See Also: _bcal | oc,_bexpand,_bfree, bheapseg, bnalloc, brealloc
Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <mal |l oc. h>

struct list {

struct list __based(__self) *next;
i nt val ue;

1

voi d main()

t |

i nt i;
__segnent seg;
struct list __ based(seg) *head;
struct list __ based(seg) *p;

/* allocate based heap */
seg = _bheapseg(1024);

if(seg == NULLSEG) {
printf("Unable to allocate based heap\n");
exit(1);

/[* create a linked list in the based heap */

head = 0;
for(i =1; i <10; i++) {
p = _bmalloc(seg, sizeof(struct list));
if(p == _NULLCOFF) {
printf(" _brmalloc failed\n");
br eak;
}
p- >next = head;
p->value = i;
head = p;
}

/* traverse the linked list, printing out val ues */
for(p =head; p!=0; p = p->next) {
printf("Value = %\ n", p->value);

74 Library Functions and Macros

_bfreeseg

/* free all the elenents of the linked list */
for(; p = head;) {

head = p->next;

_bfree(seg, p);

/* free the based heap */
_bfreeseg(seg);
}

Classification: WATCOM

Systems: DOS/16, Windows, QNX/16, OS2 1.x(all)

Library Functions and Macros 75

_bgetemd

Synopsis: #i ncl ude <process. h>
int bgetcnd(char *cnd_line, int len);

Description: The _bget cnd function causes the command line information, with the program name removed, to be
copied to cmd_line. The argument len specifies the size of cmd_line. The information isterminated
witha’' \ 0’ character. This providesamethod of obtaining the original parametersto a program as a
single string of text.

This information can also be obtained by examining the vector of program parameters passed to the
main function in the program.

Returns: The number of bytes required to store the entire command line, excluding the terminating null character,
isreturned.

See Also: abort,atexit,cl ose,exec...,exit, Exit, exit,getcnd, getenv, nain,onexit,
put env, si gnal , spawn. .., systemwait

Example: Suppose a program were invoked with the command line

nyprog arg-1 (ny stuff) here
where that program contains
#i ncl ude <stdi o. h>
#i nclude <stdlib. h>

#i ncl ude <process. h>

void main(void)

{
char *cmdline;
i nt crdl en;
cmdlen = _bgetcnd(NULL, 0) + 1;
cmdline = malloc(cndlen);
if(cmdline !'= NULL) {
cndlen = _bgetcnd(cndline, cndlen);
printf("%\n", cndline);
}

produces the following:
arg-1 (my stuff) here
Classification: WATCOM

Systems: All, Netware

76 Library Functions and Macros

_bheapseg

Synopsis:

Description:

Returns:

See Also;

Example:

#i ncl ude <mal |l oc. h>
__segnent _bheapseg(size t size);

The _bheapseg function allocates a based-heap segment of at least size bytes.

The argument size indicates the initial size for the heap. The heap will automatically be enlarged as
needed if there is not enough space available within the heap to satisfy an allocation request by
_bcal I oc,_bexpand,_bmal | oc,or _breal |l oc.

Thevauereturned by _bheapseg isthe segment value or selector for the based heap. Thisvalue
must be saved and used as an argument to other based heap functions to indicate which based heap to
operate upon.

Each call to _bheapseg allocates a new based heap.

Thevauereturned by _bheapseg isthe segment value or selector for the based heap. Thisvalue
must be saved and used as an argument to other based heap functions to indicate which based heap to
operate upon. A special value of _ NULLSEGi s returned if the segment could not be all ocated.
_bfreeseg, bcal |l oc, bexpand, bmal | oc, brealloc

#i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

#i ncl ude <mal |l oc. h>

struct list {

struct list _ based(__self) *next;
i nt val ue;

b

voi d main()

t |

i nt i;
__segnent seg;
struct list __ based(seg) *head;

struct list __ based(seg) *p;

/* allocate based heap */
seg = _bheapseg(1024);

if(seg == NULLSEG) {
printf("Unable to allocate based heap\n");
exit(1);

Library Functions and Macros 77

_bheapseg

/* create a linked list in the based heap */

head = 0;
for(i =1; i <10; i++) {
p = brmalloc(seg, sizeof(struct list));
if(== NULLOFF) {
printf("_bmalloc failed\n");
br eak;
}
p- >next = head;
p->value = i;
head = p;
}

/* traverse the linked list, printing out values */
for(p = head; p !=0; p = p->next) {
printf("Value = %l\n", p->value);

/* free all the elenents of the linked list */
for(; p = head;) {

head = p->next;

_bfree(seg, p);

/* free the based heap */
_bfreeseg(seg);

}

Classification: WATCOM

Systems: DOS/16, Windows, QNX/16, OS2 1.x(all)

78 Library Functions and Macros

_bprintf, _bwprintf

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdio. h>
int _bprintf(char *buf, size_t bufsize,
const char *fornmat,);
int bwprintf(wchar_t *buf, size_ t bufsize,
const wchar_t *format, ...);

The _bprintf functionisequivalent tothespri nt f function, except that the argument bufsize
specifies the size of the character array buf into which the generated output is placed. A null character
isplaced at the end of the generated character string. The format string is described under the
description of the pri nt f function.

The _bwpri nt f functionisidentical to _bpri nt f except that the argument buf specifies an array of
wide characters into which the generated output isto be written, rather than converted to multibyte
characters and written to astream. The _bwpr i nt f function accepts a wide-character string argument
for format

The _bpri ntf function returns the number of characters written into the array, not counting the
terminating null character. An error can occur while converting a value for output. When an error has
occurred, er r no contains avalue indicating the type of error that has been detected.

cprintf, fprintf,printf,sprintf, _vbprintf,vcprintf,vfprintf,vprintf,
vsprintf

#i ncl ude <stdi o. h>

void main(int argc, char *argv[])

{
char file_nane[9];
char file_ ext[4];
_bprintf(file_nanme, 9, "%", argv[1]);
_bprintf(file_ext, 4, "%", argv[2]);
printf("%.%\n", file_nanme, file_ext);
}
WATCOM

_bprintf - All, Netware
_bwprintf - Al

Library Functions and Macros 79

bsearch

Synopsis:

Safer C:

Description:

Returns:

See Also:

Example:

#i nclude <stdlib. h>
voi d *bsearch(const void *key,
const voi d *base,
size_t num
size t wdth,
int (*compar)(const void *pkey,
const void *pbase));

The Safer C Library extension provides the bsear ch_s function which is a safer alternative to
bsear ch. Thisnewer bsear ch_s function is recommended to be used instead of the traditional
"unsafe” bsear ch function.

The bsear ch function performs a binary search of a sorted array of num elements, which is pointed to
by base, for an item which matches the object pointed to by key. Each element in the array is width
bytesin size. The comparison function pointed to by compar is called with two arguments that point to
elementsinthe array. Thefirst argument pkey points to the same object pointed to by key. The second
argument pbase points to a element in the array. The comparison function shall return an integer less
than, equal to, or greater than zero if the key object isless than, equal to, or greater than the element in
the array.

The bsear ch function returns a pointer to the matching member of the array, or NULL if a matching
object could not be found. If there are multiple values in the array which are equal to the key, the return
value is not necessarily the first occurrence of a matching value when the array is searched linearly.

bsearch_s,Ifind,| search,qgsort,qsort_s

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

static const char *keywords[] = {
"aut o",
"break",
"case",
"char",
[* . *
[* . *
[* . *
"whi | e"
s

#defi ne NUM_ KW si zeof (keywords) / sizeof(char *)

i nt kw_conpare(const void *pl, const void *p2)

{
const char *plc = (const char *) pl;
const char **p2c = (const char **) p2;
return(strcrmp(plc, *p2c));

}

80 Library Functions and Macros

bsearch

i nt keyword | ookup(const char *name)

{
const char **key;
key = (char const **) bsearch(name, keywords, NUM KW
sizeof (char *), kw _conpare);
if(key == NULL) return(-1);
return key - keywords;
}

void main()
printf("%\ n", keyword_ | ookup("case"));
printf("%\ n", keyword_I| ookup("crigger"));
printf("%\ n", keyword_I| ookup("auto"));
//************ Sanple program Out put kkkkkkhkhkhkhkkk*x
/12

/1/-1
/10

produces the following:

2

-1

0
Classification: ANSI

Systems: All, Netware

Library Functions and Macros 81

bsearch s

Synopsis:

Constraints:

Description:

Returns:

See Also;

Example:

#define __STDC WANT_LIB EXT1__ 1

#i ncl ude <stdlib. h>

voi d *bsearch_s(const void *key,
const void *base
rsize_t nnenb,
rsize_t size

int (*conpar)(const void *k, const void *y, void *context),

voi d *context);

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler
will beinvoked and bsear ch__s will return anon-zero value to indicate an error, or the
runtime-constraint handler aborts the program.

Neither nmemb nor size shall be greater than RSI ZE_MAX. If nmemb is not equal to zero, then none of
key, base, or compar shall be anull pointer. If thereisaruntime-constraint violation, the bsearch_s
function does not search the array.

The bsear ch_s function searches an array of nmemb objects, theinitial element of which is pointed
to by base, for an element that matches the object pointed to by key. The size of each element of the
array is specified by size. The comparison function pointed to by compar is called with three
arguments. The first two point to the key object and to an array element, in that order. The function
shall return an integer less than, equal to, or greater than zero if the key object is considered,
respectively, to be less than, to match, or to be greater than the array element. The array shall consist
of: all the elements that compare less than, all the elements that compare equal to, and all the elements
that compare greater than the key object, in that order. The third argument to the comparison function
is the context argument passed to bsear ch_s The sole use of context by & funcsisto passit to the
comparison function.

Thebsear ch_s function returns a pointer to a matching element of the array,or anull pointer if no
match isfound or there is aruntime-constraint violation. If two elements compare as equal, which
element is matched is unspecified.

bsearch, | find,|search,gsort,qgsort_s

#define _ STDC WANT LIB EXT1__ 1
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

static const char *keywords[] = {
"aut 0",
"br eak",
"case",
"char",
[* . *]
[* . *]
[* . *]
"whi | e"
b

static void * context = NULL;

#defi ne NUM_KW si zeof (keywords) / sizeof(char *)

82 Library Functions and Macros

bsearch s

int kw_compare(const void *pl, const void *p2, void *context)

{
const char *plc = (const char *) pl
const char **p2c = (const char **) p2;
return(strcrmp(plc, *p2c));
}
i nt keyword_| ookup(const char *name)
{
const char **key;
key = (char const **) bsearch_s(nanme, keywords, NUM KW
sizeof (char *), kw conpare, context);
if(key == NULL) return(-1);
return key - keywords;
}
int main()
{

printf("%\ n", keyword_ | ookup("case"));
printf("%\ n", keyword_ | ookup("crigger"));
printf("%\ n", keyword_ | ookup("auto"));
return O;

//************ Sanaple program Output kkkkhkkhkkhkkhkk*k
/12

/-1
/10

produces the following:

2

-1

0
Classification: TR 24731

Systems: All, Netware

Library Functions and Macros 83

bzero

Synopsis: #i ncl ude <string. h>
void bzero(void *dst, size t n);

Description: Thebzer o function fillsthe first n bytes of the object pointed to by dst with zero (null) bytes.

Note that this function is similar to the ANSI nenset function (new code should use the ANSI

function).
Returns: The bzer o function has no return value.
See Also: bcnp, bcopy, nenset , st rset
Example: #i ncl ude <string. h>

void main()
char buffer[80];

bzero(buffer, 80);
}

Classification: WATCOM

Systems: All, Netware

84 Library Functions and Macros

cabs

Synopsis: #i ncl ude <math. h>
doubl e cabs(struct conplex value);

struct _conplex {
double x; [/* real part */
double vy; [/* imaginary part */

b

Description: The cabs function computes the absolute value of the complex number value by a calculation which is
equivaent to

sqrt((val ue.x*val ue.x) + (value.y*value.y))
In certain cases, overflow errors may occur which will causethe mat her r routine to be invoked.
Returns: The absolute value is returned.

Example: #i ncl ude <stdio. h>
#i ncl ude <math. h>

struct _conmplex ¢ ={ -3.0, 4.0 };
voi d main()

printf("%\n", cabs(c));
}

produces the following:
5. 000000
Classification: WATCOM

Systems: Math

Library Functions and Macros 85

calloc Functions

Synopsis:

Description:

Returns:

See Also;

Example:

Classification:

Systems:

#include <stdlib.h> For ANSI conpatibility (calloc only)
#include <malloc. h> Required for other function prototypes
void *calloc(size t n, size t size);
void __ based(void) * bcalloc(__segnment seg

size_t n,

size_t size);
void __far * fcalloc(size_t n, size_t size);
void __near *_ncalloc(size_t n, size_t size);

The calloc functions allocate space for an array of n objects, each of length size bytes. Each element is
initialized to 0.

Each function allocates memory from a particular heap, as listed below:
Function Heap

calloc Depends on data model of the program

_bcalloc Based heap specified by seg value

_fcalloc Far heap (outside the default data segment)

_ncalloc Near heap (inside the default data segment)

In asmall data memory model, the calloc function is equivalent to the _ncal | oc function; in alarge
data memory model, the calloc function isequivalent tothe _f cal | oc function.

A block of memory allocated should be freed using the appropriate f r ee function.

The calloc functions return a pointer to the start of the allocated memory. The return valueis NULL
(_NULLCFF for _bcal | oc) if thereisinsufficient memory available or if the value of the size
argument is zero.

_expand Functions, f r ee Functions, hal | oc, hf r ee, mal | oc Functions, _nsi ze Functions,
real | oc Functions, sbr k

#i ncl ude <stdlib. h>
void main()
char *buffer;

buffer = (char *)calloc(80, sizeof(char));

}

callocisANSI

_fcallocisnot ANSI
_bcallocisnot ANSI
_ncalocisnot ANSI

calloc - All, Netware
_bcalloc - DOS/ 16, Wndows, QNX/16, OS/2 1.x(all)
_fcalloc - DOS/ 16, Wndows, QNX/ 16, OS/2 1.x(all)

86 Library Functions and Macros

calloc Functions

_ncalloc - DOS, Wndows, Wn386, Wn32, QNX, O5/2 1.x, OS/2 1.x(MI),
os/ 2- 32

Library Functions and Macros 87

ceil

Synopsis:

Description:
Returns:
See Also:

Example:

Classification

Systems:

#i ncl ude <mat h. h>
doubl e ceil (double x);

Thecei | function (ceiling function) computes the smallest integer not less than x.
Thecei | function returns the smallest integer not less than x, expressed asa doubl e.
fl oor

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

voi d main()
printf("% % % 9% %\n", ceil(-2.1), ceil(-2.),
ceil(0.0), ceil(2.), ceil(2.1));
}
produces the following:
-2.000000 -2.000000 0.000000 2.000000 3.000000
ANS

Math

88 Library Functions and Macros

cgets

Synopsis: #i ncl ude <coni o. h>
char *cgets(char *buf);

Description: Thecget s function gets a string of characters directly from the console and stores the string and its
length in the array pointed to by buf. The first element of the array buf[0] must contain the maximum
length in characters of the string to beread. The array must be big enough to hold the string, a
terminating null character, and two additional bytes.

The cget s function reads characters until a newline character isread, or until the specified number of
charactersisread. Thestring is stored in the array starting at buf[2]. The newline character, if read, is
replaced by anull character. The actual length of the string read is placed in buf[1].

Returns: The cget s function returns a pointer to the start of the string which is at buf[2].
See Also: fgets,getch,getche,gets
Example: #i ncl ude <coni o. h>

voi d main()
char buffer[82];
buffer[0] = 80;
cgets(buffer);
cprintf("%\r\n", &buffer[2]);
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 89

chdir, _chdir

Synopsis:

Description:

Returns:

Errors:

See Also:

Example:

#i ncl ude <sys/types. h>

#i ncl ude <uni std. h>

int chdir(const char *path);
int chdir(const char *path);

Thechdi r function changes the current working directory to the specified path. The path can be
either relative to the current working directory or it can be an absolute path name.

The _chdi r functionisidentical tochdi r. Use _chdi r for ANSI/ISO naming conventions.

The chdi r function returns zero if successful. Otherwise, -1isreturned, er r no is set to indicate the
error, and the current working directory remains unchanged.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
Constant Meaning
EACCES Search permission is denied for a component of path.

ENAMETOOLONG The argument path exceeds{ PATH_MAX} in length, or a pathname component
islonger than {NAME_MAX}.

ENOENT The specified path does not exist or path is an empty string.
ENOMEM Not enough memory to allocate a control structure.
ENOTDIR A component of path is not a directory.

get cwd, nkdi r, rndi r, st at, unask

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <direct. h>

void main(int argc, char *argv[])
{
if(argec '=2) {
fprintf(stderr, "Use: cd <directory>\n");
exit(1);

if(chdir(argv[1l]) == 0)
printf("Directory changed to %\ n", argv[1]);
exit(0);
} else {
perror(argv[1]);
exit(1);

}

Classification: chdir is POSIX 1003.1

_chdir is not POSIX
_chdir conforms to ANSI/ISO naming conventions

90 Library Functions and Macros

chdir, _chdir

Systems: chdir - Al'l, Netware
_chdir - Al'l, Netware

Library Functions and Macros 91

chsize

Synopsis:

Description:

Returns:

Errors:

See Also;

Example:

#i ncl ude <uni std. h>

int chsize(

Thechsi ze

int fildes, long size);

function changes the size of the file associated with fildes by extending or truncating the

file to the length specified by size. If the file needs to be extended, the file is padded with NULL ('\0")

characters.

Note that the

chsi ze function call ignores advisory locks which may have been set by the fcnt |,

| ock, orl ocki ng functions.

Thechsi ze

function returns zero if successful. A return value of -1 indicates an error, and err no is

set to indicate the error.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant

EACCES
EBADF
ENOSPC

Meaning

The specified file is locked against access.
Invalid file descriptor. or file not opened for write.
Not enough space |eft on the device to extend thefile.

cl ose, creat, open

#i ncl ude <stdi o. h>
#i ncl ude <uni std. h>
#i ncl ude <fcntl. h>
#i ncl ude <sys/stat. h>
voi d main()

int fildes;

fildes = open("file", O RDWR | O_CREAT,

SIRUSR| S IWSR | S IRGRP | S IWRP);
if(fildes '=-1) {
if(chsize(fildes, 32 * 1024L) !=0) {

printf("Error extending file\n");

close(fildes);

}
}

Classification: WATCOM

Systems:

All, Netware

92 Library Functions and Macros

_clear87

Synopsis: #i ncl ude <fl oat. h>
unsigned int _clear87(void);

Description: The _cl ear 87 function clears the floating-point status word which is used to record the status of
8087/80287/80387/80486 floating-point operations.

Returns: The _cl ear 87 function returns the old floating-point status. The description of this statusisfound in
the<f | oat . h> header file.

See Also: _control 87, _controlfp, finite, fpreset, status87

Example: #i ncl ude <stdio. h>

#i ncl ude <fl oat. h>

voi d main()
unsigned int f
fp_status =

ntf("80x87
fp_status
printf("
fp_status
printf("
fp_status
printf("
fp_status
printf("
fp_status
printf("
fp_status
printf("

pri
i f(

printf("\n");

}

Classification: Intel

Systems:

Math

p_stat us;

_clear87();

status =");

& SW INVALID)
invalid");

& SW DENORMAL)
denormal ");

& SW ZERODI VI DE)
zero_divide");
& SW OVERFLOW)
overflow');
& SW_UNDERFLOW)
underfl ow');
& SW I NEXACT)
i nexact _result");

Library Functions and Macros

93

clearenv

Synopsis:

Description:

Returns:

Errors:

See Also;

Example:

Classification:

Systems:

#i ncl ude <env. h>
int clearenv(void);

Thecl ear env function clears the process environment area. No environment variables are defined
immediately after acall to the cl ear env function. Note that this clearsthe PATH, SHELL, TERM
TERM NFO, LI NES, COLUWNS, and TZ environment variables which may then affect the operation of
other library functions.

Thecl ear env function may manipulate the value of the pointer envi r on.

Thecl ear env function returns zero upon successful completion. Otherwise, it will return anon-zero
value and set er r no to indicate the error.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant Meaning
ENOMEM Not enough memory to allocate a control structure.
exec...,getenv, getenv_s,putenv,_searchenv,setenv,spamw. .., system

The following example clears the entire environment area and sets up anew TZ environment variable.
#i ncl ude <env. h>
voi d main()

cl earenv();
setenv("TZ", "ESTS5EDT", 0);

}

WATCOM

All, Netware

94 Library Functions and Macros

clearerr

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <stdio. h>
void clearerr(FILE *fp);

Thecl ear er r function clears the end-of-file and error indicators for the stream pointed to by fp.
Theseindicators are cleared only when the file is opened or by an explicit call tothe cl earerr or
rewi nd functions.

Thecl ear err function returns no value.

feof ,ferror,perror,strerror

#i ncl ude <stdi o. h>

void main()

FI LE *fp;
int c;
c ='J;
fp = fopen("file", "W);
if(fp !'= NULL) {
fputc(c, fp);
if(ferror(fp)) { /* if error */
clearerr(fp); /* clear the error */
fputc(¢, fp); [* and retry it */
}

}

Classification: ANSI

Systems:

All, Netware

Library Functions and Macros 95

_clearscreen

Synopsis: #i ncl ude <graph. h>
void FAR _clearscreen(short area);

Description: The _cl ear scr een function clears the indicated area and fills it with the background color. The
area argument must be one of the following values:

_GCLEARSCREEN areais entire screen

_GVIEWPORT areais current viewport or clip region
_GWINDOW areais current text window
Returns: The _cl ear scr een function does not return avalue.
See Also: _setbkcol or,_setviewport,_setcliprgn,_settextw ndow
Example: #i ncl ude <coni o. h>

#i ncl ude <graph. h>
mai n()

_setvideonode(_VRES16COLCR);
_rectangl e(_GFILLINTERI OR, 100, 100, 540, 380);
getch();
_setviewport(200, 200, 440, 280);
_clearscreen(_GVI EWPORT);
getch();
_setvi deonode(_ DEFAULTMODE) ;
}

Classification: PC Graphics

Systems: DOS, QNX

96 Library Functions and Macros

clock

Synopsis: #i nclude <time. h>
clock _t clock(void);

Description: Thecl ock function returns the number of clock ticks of processor time used by program since the
program started executing. This can be converted to seconds by dividing by the value of the macro
CLOCKS_PER_SEC

Returns: The cl ock function returns the number of clock ticks that have occurred since the program started
executing.

See Also: ascti me Functions, ct i e Functions, di ffti me,gntinme,local tinme,nktine,strftine,
tinme,tzset

Example: #i ncl ude <stdio. h>

#i ncl ude <mat h. h>

#i ncl ude <tine. h>
void conmpute(void)
int i, j;
doubl e x;
x = 0.0;
for(i =1; i <= 100; i++)

}

for(j =1, j <=100; j++)
X += sqrt((double) i * j);
printf("946.7f\n", x);

void main()

}

Classification: ANSI

clock t start _tinme, end_tineg;

start_time = clock();

conput e();

end_time = clock();

printf("Execution tine was % u seconds\n",

(end_tinme - start_time) / CLOCKS PER _SEC);

Systems: All, Netware

Library Functions and Macros

97

close

Synopsis:

Description:

Returns:

Errors:

See Also:

Example:

#i ncl ude <unistd. h>
int close(int fildes);

Thecl ose function closes afile at the operating system level. The fildes valueis the file descriptor
returned by a successful execution of one of the cr eat , dup, dup2, fcnt |, open or sopen
functions.

The cl ose function returns zero if successful. Otherwise, it returns-1 and er r no is set to indicate the
error.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant Meaning

EBADF Thefildes argument is not avalid file descriptor.

EINTR Thecl ose function was interrupted by asignal.

EIO An /o error occurred while updating the directory information.
ENOSPC A previous buffered write call hasfailed.

creat, dup, dup2, open, sopen

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

void main()

{
int fildes;
fildes = open("file", O_RDONLY);
if(fildes I=-1) {
/* process file */
close(fildes);
}
}

Classification: POSIX 1003.1

Systems:

All, Netware

98 Library Functions and Macros

closedir

Synopsis:

Description:

Returns:

Errors:

See Also:

Example:

#i ncl ude <dirent. h>
int closedir(DIR *dirp);

Thecl osedi r function closes the directory specified by dirp and frees the memory alocated by
opendi r.

Theresult of using a directory stream after one of the exec or spawn family of functionsis undefined.
After acall to the f or k function, either the parent or the child (but not both) may continue processing
the directory stream using r eaddi r or r ewi nddi r or both. If both the parent and child processes
use these functions, the result is undefined. Either or both processes may usethe cl osedi r function.

If successful, the cl osedi r function returns zero. Otherwise -1 isreturned and er r no is set to
indicate the error.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant Meaning
EBADF The argument dirp does not refer to an open directory stream.
EINTR Thecl osedi r function wasinterrupted by asignal.

opendi r,readdir,rew nddir
To get alist of files contained in the directory / hore/ f r ed of your node:

#i ncl ude <stdi o. h>
#i ncl ude <dirent. h>

voi d main()

DI R *dirp;
struct dirent *direntp;

dirp = opendir("/hone/fred");
if(dirp != NULL) {
for(;:) {
direntp = readdir(dirp);
if(direntp == NULL) break;
printf("%\n", direntp->d_nane);

}
closedir(dirp);
}
}

Classification: POSIX 1003.1

Systems:

All, Netware

Library Functions and Macros 99

_cmdname

Synopsis: #i ncl ude <process. h>
char *_cndnane(char *buffer);

Description: The _cndnane function obtains a copy of the executing program’ s pathname and placesit in buffer.

Returns: If the pathname of the executing program cannot be determined then NULL is returned; otherwise the
address of buffer is returned.

See Also: get cnd

Example: #i ncl ude <stdio. h>
#i ncl ude <process. h>

voi d main()
char buffer[PATH MAX];

printf("%\n", _cndname(buffer));

Classification: WATCOM

Systems: All, Netware

100 Library Functions and Macros

_control87

Synopsis: #i ncl ude <fl oat. h>
unsigned int _control 87(unsigned int newcw,
unsi gned int mask);

Description: The _cont r ol 87 function updates the control word of the 8087/80287/80387/80486. If mask is zero,
then the control word is not updated. 1f mask is non-zero, then the control word is updated with bits
from newcw corresponding to every bit that is on in mask.

Returns: The _cont r ol 87 function returns the new control word. The description of bits defined for the
control word isfound in the <f | oat . h> header file.

See Also: _clear87, controlfp, finite, fpreset, status87

Example: #i ncl ude <stdio. h>
#i ncl ude <fl oat. h>

char *status[2] = { "disabled", "enabled" };

voi d main()

unsigned int fp_cw = 0;

unsigned int fp_mask = O;

unsigned int bits;

fp_cw= _control 87(fp_cw,
fp_nmask);

printf("Interrupt Exception Masks\n");
bits = fp_cw & MCW EM

printf(" Invalid Operation exception %\n",

status[(bits & EM INVALID) == 0]);
printf(" Denormalized exception %\n",

status[(bits & EM DENORVAL) == 0]);
printf(" Divide-By-Zero exception %\n",

status[(bits & EM ZERODIVIDE) == 0]);
printf(" Overflow exception %\n",

status[(bits & EM OVERFLON == 0]);
printf(" Underfl ow exception %\n",

status[(bits & EM UNDERFLOWN == 0]);
printf(" Precision exception %\n",

status[(bits & EM PRECISION) == 0]);
printf("Infinity Control =");
bits = fp_cw & MCW I C,
if(bits == 1 C_AFFINE) printf("affine\n");
if(bits == 1C_PRQECTIVE) printf("projective\n");
printf("Rounding Control =");
bits = fp_cw & MCW_RC,
if(bits == RC_NEAR) printf("near\n");
if(bits == RC_DOM) printf("down\n");
if(bits == RC_UP) printf("up\n");
if(bits == RC_CHOP) printf("chop\n");

Library Functions and Macros 101

_control87

printf("Precision Control =");
bits = fp_cw & MCW PC;
if(bits == PC_24) printf("24 bits\n");
if(bits == PC_53) printf("53 bits\n");
if(bits == PC_64) printf("64 bits\n");
}
Classification: Intel
Systems: All, Netware

102 Library Functions and Macros

_controlfp

Synopsis: #i ncl ude <fl oat. h>
unsigned int _control fp(unsigned int newcw,
unsi gned int mask);

Description: The _cont r ol f p function updates the control word of the 8087/80287/80387/80486. If mask is zero,
then the control word is not updated. 1f mask is non-zero, then the control word is updated with bits
from newcw corresponding to every bit that is on in mask.

Returns: The _cont r ol f p function returns the new control word. The description of bits defined for the
control word isfound in the <f | oat . h> header file.

See Also: _clear87, control 87, finite, fpreset, status87

Example: #i ncl ude <stdio. h>
#i ncl ude <fl oat. h>

char *status[2] = { "disabled", "enabled" };

voi d main()

unsigned int fp_cw = 0;

unsigned int fp_mask = O;

unsigned int bits;

fp_cw= controlfp(fp_cw,
fp_nmask);

printf("Interrupt Exception Masks\n");
bits = fp_cw & MCW EM

printf(" Invalid Operation exception %\n",

status[(bits & EM INVALID) == 0]);
printf(" Denormalized exception %\n",

status[(bits & EM DENORVAL) == 0]);
printf(" Divide-By-Zero exception %\n",

status[(bits & EM ZERODIVIDE) == 0]);
printf(" Overflow exception %\n",

status[(bits & EM OVERFLON == 0]);
printf(" Underfl ow exception %\n",

status[(bits & EM UNDERFLOWN == 0]);
printf(" Precision exception %\n",

status[(bits & EM PRECISION) == 0]);
printf("Infinity Control =");
bits = fp_cw & MCW I C,
if(bits == 1 C_AFFINE) printf("affine\n");
if(bits == 1C_PRQECTIVE) printf("projective\n");
printf("Rounding Control =");
bits = fp_cw & MCW_RC,
if(bits == RC_NEAR) printf("near\n");
if(bits == RC_DOM) printf("down\n");
if(bits == RC_UP) printf("up\n");
if(bits == RC_CHOP) printf("chop\n");

Library Functions and Macros 103

_controlfp

printf("Precision Control =");
bits = fp_cw & MCW PC;
if(bits == PC_24) printf("24 bits\n");
if(bits == PC_53) printf("53 bits\n");
if(bits == PC_64) printf("64 bits\n");
}
Classification: Intel
Systems: All, Netware

104 Library Functions and Macros

cos

Synopsis: #i ncl ude <math. h>
doubl e cos(double x);

Description: The cos function computes the cosine of x (measured in radians). A large magnitude argument may
yield aresult with little or no significance.

Returns:; The cos function returns the cosine value.
See Also: acos, sin,tan
Example: #i ncl ude <math. h>

voi d main()
doubl e val ue;
val ue = cos(3.1415278);
}

Classification: ANSI

Systems: Math

Library Functions and Macros 105

cosh

Synopsis: #i ncl ude <math. h>
doubl e cosh(double x);

Description: The cosh function computes the hyperbolic cosine of x. A range error occursif the magnitude of x is
too large.

Returns: The cosh function returns the hyperbolic cosine value. When the argument is outside the permissible
range, the mat her r functioniscalled. Unlessthe default mat her r function is replaced, it will set the
global variable er r no to ERANGE, and print a"RANGE error" diagnostic message using the st der r

stream.
See Also; si nh, t anh, mat herr
Example: #i ncl ude <stdio. h>

#i ncl ude <mat h. h>
void main()

printf("%\n", cosh(.5));
}

produces the following:

1.127626
Classification: ANSI

Systems: Math

106 Library Functions and Macros

cprintf

Synopsis: #i ncl ude <coni o. h>
int cprintf(const char *format, ...);

Description: Thecpri nt f function writes output directly to the console under control of the argument format. The
put ch function is used to output characters to the console. The format string is described under the
description of the pri nt f function.

Returns: Thecpri ntf function returns the number of characters written.

See Also: _bprintf, fprintf, printf,sprintf, vbprintf,vcprintf,vfprintf,vprintf,
vsprintf

Example: #i ncl ude <coni o. h>

void main()

{

char *weekday, *nonth;
i nt day, year;

weekday = "Saturday"”;

nonth = "April";
day = 18;
year = 1987;

cprintf("%, % %, %\n",
weekday, nonth, day, year);
}

produces the following:
Sat urday, April 18, 1987
Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 107

cputs

Synopsis: #i ncl ude <coni o. h>
int cputs(const char *buf);

Description: Thecput s function writes the character string pointed to by buf directly to the console using the
put ch function. Unlikethe put s function, the carriage-return and line-feed characters are not
appended to the string. The terminating null character is not written.

Returns: The cput s function returns a non-zero value if an error occurs; otherwise, it returns zero. When an
error has occurred, er r no contains avalue indicating the type of error that has been detected.

See Also: fputs, putch, puts
Example: #i ncl ude <coni o. h>
void main()
char buffer[82];
buffer[0] = 80;
cgets(buffer);
cputs(&buffer[2]);
putch(*\r");
putch("\n");
}

Classification: WATCOM

Systems: All, Netware

108 Library Functions and Macros

creat

Synopsis:

Description:

Returns:

#i ncl ude <sys/types. h>

#i ncl ude <sys/stat. h>

#i ncl ude <fcntl. h>

int creat(const char *path, node_ t node);

Thecr eat function creates (and opens) afile at the operating system level. It isequivalent to:
open(path, O WRONLY | O CREAT | O _TRUNC, node);

The name of thefile to be created is given by path. When the file exists (it must be writeable), it is
truncated to contain no data and the preceding mode setting is unchanged.

When the file does not exigt, it is created with access permissions given by the mode argument. The
access permissions for the file or directory are specified as a combination of bits (defined in the
<sys/ st at . h> header file).

The following bits define permissions for the owner.

Permission Meaning

S IRWXU Read, write, execute/search
S IRUSR Read permission

S IWUSR Write permission

S IXUSR Execute/search permission

The following bits define permissions for the group.

Permission Meaning

S IRWXG Read, write, execute/search
S IRGRP Read permission

S IWGRP Write permission

S IXGRP Execute/search permission

The following bits define permissions for others.

Permission Meaning

S IRWXO Read, write, execute/search
S IROTH Read permission

S IWOTH Write permission

S IXOTH Execute/search permission

The following bits define miscellaneous permissions used by other implementations.

Permission Meaning

S IREAD isequivalentto S IRUSR (read permission)

S IWRITE isequivalentto S IWUSR (write permission)

S IEXEC isequivalent to S IXUSR (execute/search permission)

If successful, cr eat returns adescriptor for the file. When an error occurs while opening thefile, -1 is
returned, and er r no is set to indicate the error.

Library Functions and Macros 109

creat

Errors:

See Also:

Example:

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant

EACCES

EBADFSYS

EBUSY

EINTR

EISDIR

EMFILE

Meaning

Search permission is denied on a component of the path prefix, or the file exists
and the permissions specified by mode are denied, or the file does not exist and
write permission is denied for the parent directory of the file to be created.

While attempting to open the named file, either the file itself or a component of
the path prefix was found to be corrupted. A system failure -- from which no
automatic recovery is possible -- occurred while the file was being written to or
while the directory was being updated. It will be necessary to invoke appropriate
systems administrative procedures to correct this situation before proceeding.

The file named by path is a block special device which isalready open for writing,
or path names afile which is on afile system mounted on a block special device
which is already open for writing.

Thecr eat operation was interrupted by asignal.

The named fileis a directory and the file creation flags specify write-only or
read/write access.

Too many file descriptors are currently in use by this process.

ENAMETOOLONG The length of the path string exceeds { PATH_MAX}, or a pathname component

islonger than { NAME_MAX}.

ENFILE Too many files are currently open in the system.

ENOENT Either the path prefix does not exist or the path argument points to an empty
string.

ENOSPC The directory or file system which would contain the new file cannot be extended.

ENOTDIR A component of the path prefix is not adirectory.

EROFS The named file resides on aread-only file system and either O_WRONLY,
O _RDWR, O CREAT (if thefile does not exist), or O TRUNC s set.

chsi ze, cl ose, dup, dup2, eof ,exec. .. ,fdopen,filelength,fil eno,fstat,| seek,

open, read, set node, sopen, stat,tell ,wite,umask

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

void main()

int fildes;

110 Library Functions and Macros

creat

fildes = creat("file",
SIRUSR| S IWSR| S IRGRP | S IWRP);
if(fildes I=-1) {
/* process file */

close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

Library Functions and Macros 111

cscanf

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <coni o. h>
int cscanf(const char *format, ...);

Thecscanf function scansinput from the console under control of the argument format. Following
the format string isalist of addressesto receive values. The cscanf function uses the function

get che to read characters from the console. The format string is described under the description of
thescanf function.

Thecscanf function returns EOF when the scanning is terminated by reaching the end of the input
stream. Otherwise, the number of input arguments for which values were successfully scanned and
stored isreturned. When afileinput error occurs, the er r no global variable may be set.

f scanf, scanf, sscanf,vcscanf, vfscanf, vscanf, vsscanf
To scan adate in the form " Saturday April 18 1987":

#i ncl ude <coni o. h>

void main()

i nt day, year;
char weekday[10], nonth[10];

cscanf("% % % %",

weekday, nonth, &day, &year);
cprintf("\n%, % %, %\n",

weekday, nonth, day, year);

}

Classification: WATCOM

Systems:

All, Netware

112 Library Functions and Macros

ctime Functions

Synopsis:

Safer C:

Description:

Returns:

See Also:

Example:

#i nclude <time. h>

char * ctime(const tine_t *tiner);

char * _ctime(const tine_t *tiner, char *buf);

wchar _t * wectime(const tinme_t *timer);

wchar _t * wectinme(const tinme_t *tinmer, wchar _t *buf);

The Safer C Library extension provides the function which is a safer dternativeto ct i ne. This newer
cti me_s function is recommended to be used instead of the traditional "unsafe” ct i ne function.

The ctime functions convert the calendar time pointed to by timer to local timein the form of a string.
The ctime function is equivalent to

asctine(localtinme(tiner))

The ctime functions convert the time into a string containing exactly 26 characters. This string has the
form shown in the following example:

Sat Mar 21 15:58:27 1987\n\0

All fields have a constant width. The new-line character * \ n’ and the null character * \ 0’ occupy the
last two positions of the string.

The ANSI function ctime places the result string in a static buffer that is re-used each time ctime or
ascti nmeiscaled. Thenon-ANSI function _ct i me placesthe result string in the buffer pointed to
by buf.

The wide-character function _wct i nme isidentical to ctime except that it produces a wide-character
string (which istwice aslong). The wide-character function __wct i me isidentical to_ct i me except
that it produces a wide-character string (which is twice aslong).

Whenever the ctime functions are called, the t zset functionisalso called.

The calendar time is usually obtained by using the t i e function. That time is Coordinated Universal
Time (UTC) (formerly known as Greenwich Mean Time (GMT)).

The time set on the computer with the QNX dat e command reflects Coordinated Universal Time
(UTC). Theenvironment variable TZ is used to establish the local time zone. See the section The TZ
Environment Variable for a discussion of how to set the time zone.

The ctime functions return the pointer to the string containing the local time.

ascti me Functions, cl ock, di fftime,gntinme,localtine, nktine,strftinme,tine,
tzset

#i ncl ude <stdi o. h>
#i ncl ude <tine. h>

voi d main()

tinme_t time_of day;
aut o char buf[26];

Library Functions and Macros 113

ctime Functions

time_of _day = tinme(NULL);
printf("It is now %", _ctime(&ine_of day, buf));

produces the following:

It is now Fri Dec 25 15:58:42 1987

Classification: ctimeis ANS|
_ctimeisnot ANSI
_wctimeisnot ANSI
__wctimeisnot ANSI

Systems: ctime - All, Netware
_ctime - Al
_wetine - Al
__wtime - Al

114 Library Functions and Macros

delay

Synopsis:

Description:

Returns:

Errors:

See Also:

Example:

Classification:

Systems:

#i ncl ude <i 86. h>
unsi gned int delay(unsigned int mlliseconds);

The del ay function suspends the calling process until the number of real time milliseconds specified
by the milliseconds argument have elapsed, or a signal whose action isto either terminate the process or
call asignal handler isreceived. The suspension time may be greater than the requested amount due to
the scheduling of other, higher priority activity by the system.

The del ay function returns zero if the full time specified was completed; otherwise it returns the
number of milliseconds unslept if interrupted by asignal.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant Meaning
EAGAIN No timer resources available to satisfy the request.
sl eep

#i ncl ude <i 86. h>
voi d main()

sound(200);
delay(500); [/* delay for 1/2 second */

nosound() ;
WATCOM
All, Netware

Library Functions and Macros 115

_dieeetomsbin

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <math. h>
extern int _dieeetonshin(double *src, double *dest);

The _di eeet onsbi n function loads the double pointed to by src in |EEE format and convertsit to
Microsoft binary format, storing the result into the double pointed to by dest.

For _di eeet onsbi n, IEEE Nan'sand Infinitieswill cause overflow. |EEE denormalswill be
converted if within range. Otherwise, they will be converted to 0 in the Microsoft binary format.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft
binary format doublesis 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors
became standard.

The _di eeet onsbi n function returns O if the conversion was successful. Otherwise, it returns 1 if
conversion would cause an overflow.

_dnsbi nt oi eee, fieeetonsbin, fnsbintoieee

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

voi d main()

float fieee, fnsb;
doubl e di eee, dnsb;

fieee
di eee

0.5;
-2.0;

/* Convert |EEE format to Mcrosoft binary format */
_fieeetonsbin(& ieee, & nsb);

_di eeet onsbi n(&di eee, &dnsb);

/* Convert Mcrosoft binary format back to | EEE format */
_frnebintoi eee(& nmsb, &fieee);

_dnsbi nt oi eee(&dnsb, &dieee);

/* Display results */

printf("fieee = %, dieee = %\n", fieee, dieee);

}
produces the following:
fi eee = 0.500000, dieee = -2.000000
WATCOM

All, Netware

116 Library Functions and Macros

difftime

Synopsis: #i nclude <time. h>
double difftinme(time_t tinel, tinme_t tine0);

Description: Thedi f f t i me function calculates the difference between the two calendar times:

timel - tinme0

Returns: Thedi f f t i me function returns the difference between the two timesin seconds asa doubl e.

See Also: asct i me Functions, cl ock, cti me Functions, gnt i me, | ocal ti me, nktime,strftime,
tinme, tzset

Example: #i ncl ude <stdio. h>

#i ncl ude <tine. h>

voi d conpute(void);

voi d main()
time_t start_tinme, end_tine;
start_time = time(NULL);
conput e();
end _time = time(NULL);

printf("Elapsed time: % seconds\n",
difftinme(end_tinme, start_time));

}
void conmpute(void)
int i, j;
for(i =1; i <=20; i++) {
for(j =1; j <= 20; j++)
printf("9&d ", i *j);

printf("\n");
}
}

Classification: ANSI

Systems: Math

Library Functions and Macros 117

dirname

Synopsis: #i ncl ude <l i bgen. h>
char *dirname(char *path);

Description: Thedi r name function takes a pointer to a character string that contains a pathname, and returns a
pointer to a string that is a pathname of the parent directory of that file. Trailing path separators are not
considered as part of the path.

Thedi r nane function may modify the string pointed to by path and may return a pointer to static
storage that may be overwritten by a subsequent call to di r nane.

Thedi r nane function is not re-entrant or thread-safe.

Returns: Thedi r nane function returns a pointer to a string that is the parent directory of path. If pathisanull
pointer or pointsto an empty string, a pointer to the string "." is returned.

See Also: basenane

Example: #i ncl ude <stdio. h>
#i ncl ude <l ibgen. h>

int main(void)

{
puts(dirname("/usr/lib"));
puts(dirname("/usr/"));
puts(dirname("usr"));
puts(dirname("/"));
puts(dirname(".."));
return(0);

}

produces the following:

[usr
/

/
Classification: POSIX

Systems: All, Netware

118 Library Functions and Macros

_disable

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <i 86. h>
void _disable(void);

The _di sabl e function causes interrupts to become disabled.

The _di sabl e function would be used in conjunction with the _enabl e function to make sure that a
sequence of instructions are executed without any intervening interrupts occurring.

When you usethe _di sabl e function, your program must be linked for privity level 1 and the process
must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of privity levels and the
documentation of the Watcom Linker PRIVILEGE option.

The _di sabl e function returns no value.

_enabl e

#i ncl ude <stdio. h>
#i ncl ude <stdlib. h>
#i ncl ude <i 86. h>

struct list_entry {
struct list_entry *next;

i nt dat a;
1
vol atile struct list_entry *ListHead = NULL
volatile struct list_entry *ListTail = NULL

void insert(struct list_entry *new entry)

{

/* insert new entry at end of linked list */
new_entry->next = NULL;

_disable(); /* disable interrupts */
if(ListTail == NULL) {

Li st Head = new_entry;
} else {

Li st Tai | ->next = new_entry;

ListTail = new entry;
_enabl e(); /* enable interrupts now */

voi d main()
{
struct list_entry *p;
int i;

for(i =1; i <= 10; i++) {
p = (struct list_entry *)
mal | oc(sizeof(struct list_entry));
if(p == NULL) break
p->data = i;
insert(p);
}

Library Functions and Macros 119

_disable

Classification: Intel

Systems: All, Netware

120 Library Functions and Macros

_displaycursor

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <graph. h>
short _FAR _displaycursor(short node);

The _di spl aycur sor function is used to establish whether the text cursor isto be displayed when
graphics functions complete. On entry to a graphics function, the text cursor is turned off. When the
function completes, the mode setting determines whether the cursor is turned back on. The mode
argument can have one of the following values:

_GCURSORON the cursor will be displayed
_GCURSOROFF the cursor will not be displayed

The _di spl aycur sor function returns the previous setting for mode.
_gettextcursor,_settextcursor

#i ncl ude <stdio. h>
#i ncl ude <graph. h>

mai n()
char buf[80];

_setvideonode(_TEXTC80);
_settextposition(2, 1);
_displaycursor(_GCURSORON);
_outtext("Cursor ON\\n\nEnter your name >");
gets(buf);
_displaycursor(_GCURSOROFF);
_settextposition(6, 1);
_outtext("Cursor OFF\n\nEnter your nanme >");
gets(buf);
_setvideonode(_ DEFAULTMODE);
}

Classification: _displaycursor is PC Graphics

Systems:

DOS, QNX

Library Functions and Macros 121

div

Synopsis: #i nclude <stdlib. h>
div_t div(int nuner, int denom);

typedef struct {

int quot; /* quotient */
int rem /* remai nder */
} div_t;

Description: Thedi v function calculates the quotient and remainder of the division of the numerator numer by the
denominator denom.

Returns: Thedi v function returns a structure of type di v_t which containsthe fields quot and r em
See Also: Idiv,l1div,imxdiv
Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

void print_tine(int seconds)

{

div_t nmn_sec;

mn_sec = div(seconds, 60);

printf("It took % minutes and % seconds\n",

m n_sec.quot, min_sec.rem);
}
void main(void)
{
print_time(130);

}

produces the following:
It took 2 mnutes and 10 seconds
Classification: 1SO C90

Systems: All, Netware

122 Library Functions and Macros

_dmsbintoieee

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <math. h>
extern int _dnsbintoieee(double *src, double *dest);

The _dnsbi nt oi eee function loads the double pointed to by src in Microsoft binary format and
convertsit to |EEE format, storing the result into the double pointed to by dest.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft
binary format doublesis 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors
became standard.

The _dnsbi nt oi eee function returns O if the conversion was successful. Otherwise, it returns 1 if
conversion would cause an overflow.

_di eeetonsbi n, _fieeetonsbin, fnsbhintoieee

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

void main()

float fieee, fnsb;
doubl e di eee, dnsb;

fieee
di eee

0.5;
-2.0;

/* Convert |EEE format to Mcrosoft binary format */
_fieeetonsbin(& ieee, & nsb);
_di eeet onsbi n(&di eee, &dnsb);

/* Convert M crosoft binary format back to | EEE format */
_fnsbintoi eee(& nsh, &fieee);

_dnsbi nt oi eee(&dnshb, &dieee);

/* Display results */

printf("fieee = %6, dieee = %6\n", fieee, dieee);

}

produces the following:

fieee = 0.500000, dieee = -2.000000

Classification: WATCOM

Systems:

All, Netware

Library Functions and Macros 123

dup

Synopsis:

Description:

Returns:

Errors:

See Also:

Example:

#i ncl ude <uni std. h>
int dup(int fildes);

The dup function duplicates the file descriptor given by the argument fildes. The new file descriptor
refers to the same open file descriptor as the original file descriptor, and shares any locks. The new file
descriptor isidentical to the original in that it references the samefile or device, it has the same open
mode (read and/or write) and it will have file position identical to the original. Changing the position
with one descriptor will result in a changed position in the other.

The call

dup_fil des dup(fildes);

is equivaent to:

dup_fil des fentl (fildes, F_DUPFD, 0);

If successful, the new file descriptor is returned to be used with the other functions which operate on the
file. Otherwise, -1isreturned and er r no is set to indicate the error.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant Meaning

EBADF The argument fildes is not avalid open file descriptor.

EMFILE The number of file descriptors would exceed { OPEN_MAX}.

chsi ze, cl ose, creat, dup2, eof ,exec...,fdopen,filelength,fileno,fstat,

| seek, open, read, set nbde, sopen,stat,tell,wite,umask

#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

void main(void)

{
int fildes, dup_fildes;
fildes = open("file",
O WRONLY | O _CREAT | O _TRUNC,
SIRUSR| S IWSR | S IRERP | S IWRP);
if(fildes !'=-1)
dup_fildes = dup(fildes);
if(dup_fildes !=-1) {
/* process file */
close(dup_fildes);
close(fildes);
}
}

Classification: POSIX 1003.1

124 Library Functions and Macros

dup

Systems: All, Netware

Library Functions and Macros 125

dup2

Synopsis: #i ncl ude <unistd. h>
int dup2(int fildes, int fildes2);

Description: Thedup?2 function duplicates the file descriptor given by the argument fildes. The new file descriptor
isidentical to the original in that it references the same file or device, it has the same open mode (read
and/or write) and it will have identical file position to the original (changing the position with one
descriptor will result in a changed position in the other).

The number of the new descriptor isfildes2. If afile aready is opened with this descriptor, thefileis
closed before the duplication is attempted.

Thecall
dup_fildes = dup2(fildes, fildes2);
is equivalent to:

close(fildes2);
dup _fildes = fcntl(fildes, F_DUPFD, fildes2);

Returns: The dup2 function returns the value of fildes2 if successful. Otherwise, -1isreturnedand errno is
set to indicate the error.

Errors: When an error has occurred, er r no contains a value indicating the type of error that has been detected.
Constant Meaning
EBADF The argument fildesis not avalid open file descriptor or fildes2 is out of range.
EMFILE The number of file descriptors would exceed { OPEN_MAX}, or no file

descriptors above fildes2 are available.

See Also: chsi ze, cl ose, cr eat, dup, eof ,exec...,fdopen,filelength,fileno,fstat,
| seek, open, read, set node, sopen,stat,tell,wite,umsk

Example: #i nclude <fcntl. h>
#i ncl ude <uni std. h>

void main()
int fildes, dup_fildes;
fildes = open("file",

O WRONLY | O CREAT | O _TRUNG,
SIRUSR| STWSR| STRGRP | S IWRP):

if(fildes I=-1) {
dup_fildes = 4;
if(dup2(fildes, dup_fildes) I=-1) {

[* process file */

126 Library Functions and Macros

dup2

close(dup _fildes);

close(fildes);

}
}

Classification: POSIX 1003.1

Systems: All, Netware

Library Functions and Macros 127

ecvt, _ecvt,

_Wwecvt

Synopsis:

Description:

Returns:

See Also;

Example:

Classification:

Systems:

#i nclude <stdlib. h>
char *ecvt(doubl e val ue,
int ndigits,
int *dec,
int *sign);
char *_ecvt(doubl e val ue,
int ndigits,
int *dec,
int *sign);
wchar _t *_ wecvt(doubl e val ue,
int ndigits,
int *dec,
int *sign);

Theecvt function converts the floating-point number value into a character string. The parameter
ndigits specifies the number of significant digits desired. The converted number will be rounded to
ndigits of precision.

The character string will contain only digits and is terminated by anull character. Theinteger pointed
to by dec will be filled in with avalue indicating the position of the decimal point relative to the start of
the string of digits. A zero or negative value indicates that the decimal point lies to the left of the first
digit. Theinteger pointed to by sign will contain O if the number is positive, and non-zero if the number
is negative.

The _ecvt functionisidentical toecvt. Use _ecvt for ANSI/ISO naming conventions.

The _wecvt functionisidentical to ecvt except that it produces a wide-character string.

Theecvt function returns a pointer to a static buffer containing the converted string of digits. Note:
ecvt and f cvt both usethe same static buffer.

fcvt,gevt,printf

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

void main()

{

char *str;

int dec, sign;

str = ecvt(123.456789, 6, &dec, &sign);

printf("str=%, dec=%l, sign=%\n", str,dec,sign);
}

produces the following:
str=123457, dec=3, sign=0

WATCOM
_ecvt conforms to ANSI/ISO naming conventions

ecvt - Math
_ecvt - Math

128 Library Functions and Macros

ecvt, _ecvt, _wecvt

_wecvt - Math

Library Functions and Macros 129

_ellipse Functions

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <graph. h>
short _FAR _ellipse(short fill, short x1, short y1,
short x2, short y2);

short _FAR _ellipse_ W short fill, double x1, double y1,
doubl e x2, double y2);

short _FAR _ellipse_wxy(short fill,
struct _wxycoord _FAR *p1l,
struct _wxycoord _FAR *p2);

The _el I'i pse functionsdraw ellipses. The _el | i pse function uses the view coordinate system.
The_ellipse_wand_el | i pse_wxy functions use the window coordinate system.

The center of the ellipse is the center of the rectangle established by the points (x1, y1) and
(x2,y2).

The argument fill determines whether the ellipseisfilled in or has only its outline drawn. The argument
can have one of two values:

_GFILLINTERIOR fill the interior by writing pixels with the current plot action using the current
color and the current fill mask

_GBORDER leave the interior unchanged; draw the outline of the figure with the current
plot action using the current color and line style

When the coordinates (x1, y1) and (x2, y2) establish aline or a point (this happens when one or
more of the x-coordinates or y-coordinates are equal), nothing is drawn.

The _el | i pse functions return a non-zero value when the ellipse was successfully drawn; otherwise,
zero is returned.

_arc,_rectangl e, _setcolor,_setfill mask,_setlinestyle, setplotaction

#i ncl ude <coni o. h>
#i ncl ude <graph. h>

mai n()

_setvideonode(_VRES16COLCR);

_ellipse(_GBORDER, 120, 90, 520, 390);
getch();

_setvideonode(_ DEFAULTMODE) ;

}

produces the following:

130 Library Functions and Macros

_ellipse Functions

.

Classification: _ellipseis PC Graphics
Systems: _ellipse - DOS, Q\NX

_ellipse_w - DOS, QX
_ellipse_wxy - DOS, ONX

Library Functions and Macros 131

_enable

Synopsis: #i ncl ude <i 86. h>
void _enable(void);

Description: The _enabl e function causes interrupts to become enabled.
The _enabl e function would be used in conjunction with the _di sabl e function to make sure that a
sequence of instructions are executed without any intervening interrupts occurring.
When you usethe _enabl e function, your program must be linked for privity level 1 and the process
must be run by the superuser. See the Watcom C/C++ User’s Guide discussion of privity levels and the
documentation of the Watcom Linker PRIVILEGE option.

Returns: The _enabl e function returns no value.

See Also: _disable

Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
#i ncl ude <i 86. h>

struct list_entry {
struct list_entry *next;

i nt dat a;
b
struct list_entry *ListHead = NULL;
struct list_entry *ListTail = NULL;

void insert(struct list_entry *new entry)

{

/* insert new entry at end of linked list */
new_entry->next = NULL;

_disable(); /* disable interrupts */
if(ListTail == NULL) {

Li st Head = new_entry;
} else {

Li st Tai | ->next = new_entry;

ListTail = new_ entry;
_enabl e(); /* enable interrupts now */

voi d main()
{
struct list_entry *p;
int i;

for(i =1; i <= 10; i++) {

p = (struct list_entry *)
mal | oc(sizeof(struct list_entry));

if(p == NULL) break;
p->data = i;
insert(p);

}

}

132 Library Functions and Macros

_enable

Classification: Intel

Systems: All, Netware

Library Functions and Macros 133

eof

Synopsis:

Description:

Returns:

Errors:

See Also:

Example:

#i ncl ude <uni std. h>
int eof(int fildes);

The eof function determines, at the operating system level, if the end of the file has been reached for
the file whose file descriptor is given by fildes. Because the current file position is set following an
input operation, the eof function may be called to detect the end of the file before an input operation
beyond the end of the file is attempted.

Theeof function returns 1 if the current file position is at the end of thefile, O if the current file
position isnot at theend. A return value of -1 indicates an error, and in thiscase err no issetto
indicate the error.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
EBADF Thefildes argument is not avalid file descriptor.

read

#i ncl ude <stdio. h>

#i nclude <fcntl. h>

#i ncl ude <uni std. h>

void main(void)

{
int fildes, len;
char buffer[100];
fildes = open("file", O_RDONLY);
if(fildes '=-1) {
while(! eof(fildes)) {
len = read(fildes, buffer, sizeof(buffer) - 1);
buffer[len] ="\0
printf("%", buffer);
close(fildes);
}
}

Classification: WATCOM

Systems:

All, Netware

134 Library Functions and Macros

exec... Functions

Synopsis:

Description:

#i ncl ude <process. h>

The exec...

nt execl (path, arg0, argl..., argn, NULL);
nt execle(path, arg0, argl..., argn, NULL, envp);
nt execlp(file, arg0, argl..., argn, NULL);

nt execlpe(file, arg0, argl...

argn, NULL, envp);

nt execv(path, argv);
nt execve(path, argv, envp);
nt execvp(file, argv);
nt execvpe(file, argv, envp);

const char *path; /* file name incl. path */
const char *file; /* file name */
const char *arg0, ..., *argn; /* argunents */
const char *const argv[]; /* array of argunents */
const char *const envp[]; /* environnment strings */
nt _wexecl (path, arg0, argl..., argn, NULL);

nt _wexecle(path, argO, argl..., argn, NULL, envp);

nt _wexeclp(file, arg0, argl..., argn, NULL);

nt _wexeclpe(file, arg0O, argl...

argn, NULL, envp);

nt _wexecv(path, argv);
nt _wexecve(path, argv, envp);
nt _wexecvp(file, argv);
nt _wexecvpe(file, argv, envp);

const
const
const
const
const

wchar _t *path; /* file nane incl. path */
wchar _t *file; [* file name */
wchar _t *argO, ..., *argn;/* argunents */
wchar _t *const argv[]; /* array of argunents */
wchar _t *const envp[]; /* environment strings */

functions load and execute a new child process, named by path or file. If the child process

is successfully loaded, it replaces the current processin memory. No return is made to the origina
program.

1.

The"|" form of the exec functions (execl...) contain an argument list terminated by a NULL
pointer. The argument arg0 should point to afilename that is associated with the program
being loaded.

The"v" form of the exec functions (execv...) contain a pointer to an argument vector. The
value in argv[0] should point to afilename that is associated with the program being loaded.
The last member of argv must be a NULL pointer. The value of argv cannot be NULL, but
argv[0] can be a NULL pointer if no argument strings are passed.

The"p" form of the exec functions (execlp..., execvp...) use paths listed in the "PATH"
environment variable to locate the program to be loaded provided that the following
conditions are met. The argument file identifies the name of program to be loaded. If no
path character (/) isincluded in the name, an attempt is made to load the program from one of
the pathsin the "PATH" environment variable. If "PATH" is not defined, the current
working directory isused. If apath character (/) isincluded in the name, the program is
loaded asin the following point.

If a"p" form of the exec functionsis not used, path must identify the program to be loaded,
including apath if required. Unlike the "p" form of the exec functions, only one attempt is
made to locate and load the program.

The"e" form of the exec functions (exec...e) pass a pointer to a new environment for the
program being loaded. The argument envp is an array of character pointers to

Library Functions and Macros 135

exec... Functions

Returns:

Errors:

See Also:

Example:

null-terminated strings. The array of pointersisterminated by a NULL pointer. The value of
envp cannot be NULL, but envp[0] can be a NULL pointer if no environment strings are
passed.

An error is detected when the program cannot be found.

Arguments are passed to the child process by supplying one or more pointers to character strings as
arguments in the exec... call.

The arguments may be passed as alist of arguments (execl , execl e, execl p, and execl pe) or as
avector of pointers (execv, execve, execvp, and execvpe). At least one argument, arg0 or
argv[0], must be passed to the child process. By convention, thisfirst argument is a pointer to the name
of the program.

If the arguments are passed as alist, there must be a NULL pointer to mark the end of the argument list.
Similarly, if a pointer to an argument vector is passed, the argument vector must be terminated by a
NULL pointer.

The environment for the invoked program is inherited from the parent process when you use the

execl , execl p, execv, and execvp functions. The execl e, execl pe, execve, and execvpe
functions allow a different environment to be passed to the child process through the envp argument.
The argument envp is a pointer to an array of character pointers, each of which pointsto a string
defining an environment variable. The array isterminated with a NULL pointer. Each pointer locates a
character string of the form

vari abl e=val ue

that is used to define an environment variable. If the value of envp is NULL, then the child process
inherits the environment of the parent process.

The environment is the collection of environment variables whose values have been defined with the
QNX export command or by the successful execution of the put env or set env functions. A
program may read these values with the get env function.

Theexecvpe and execl pe functions are extensions to POSIX 1003.1. The wide-character
_wexecl, wexecle, _wexeclp, _wexecl pe, _wexecv, _wexecve, _wexecvp and
_wexecvpe functions are similar to their counterparts but operate on wide-character strings.

When the invoked program is successfully initiated, no return occurs. When an error is detected while
invoking the indicated program, exec... returns-1 and er r no is set to indicate the error.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
See the gnx_ spawn function for a description of possible er r no values.

abort,atexit,exit,_exit,getcnd, getenv, main, putenv, spawn. .., system

#i ncl ude <stddef. h>
#i ncl ude <process. h>

execl ("myprog",
"myprog", "ARGL", "ARG", NULL);

The preceding invokes "myprog" as if

136 Library Functions and Macros

exec... Functions

myprog ARGL AR&X2

had been entered as a command to QNX. The program will be found if "myprog" isfound in the
current working directory.

#i ncl ude <stddef. h>
#i ncl ude <process. h>

char *env_list[] = { "SOURCE=MYDATA",
" TARGET=QUTPUT" ,
"lines=65",

NULL

1

execl e("nyprog",
"myprog", "ARGL", "ARRXR2", NULL,
env_list);
The preceding invokes "myprog” asif

myprog ARGL ARG

had been entered as a command to QNX. The program will be found if "myprog" isfound in the
current working directory. The QNX environment for the invoked program will consist of the three
environment variables SOURCE, TARGET and | i nes.

#i ncl ude <stddef. h>
#i ncl ude <process. h>

char *arg_list[] ={ "nyprog", "ARGL", "AR®", NULL };
execv("myprog", arg_list);
The preceding invokes "myprog" as if

myprog ARGL ARRX2

had been entered as a command to QNX. The program will be found if "myprog" isfound in the
current working directory.

Classification: exec... isPOSIX 1003.1 with extensions
_wexec... isnot POSIX

0s/ 2-32
, 0O8/2-32
oS/ 2- 32

Systems: execl - DOS/16, Wn32, QNX, Os/2 1.x(all),

execle - DOS/ 16, Wn32, Q\NX, O5/2 1.x(all)

execlp - DOS/ 16, Wn32, ONX, O5/2 1.x(all),

execl pe - DOS/ 16, Wn32, QNX, OS/2 1.x(all), OS/2-32
execv - DOS/ 16, Wn32, ONX, OS/2 1.x(all), Os/2-32
I
I
I

execve - DOS/ 16, Wn32, ONX, OS/2 1.x(al) Qs/ 2- 32
execvp - DOS/ 16, Wn32, ONX, Cs/2 1.x(all), Os/2-32
execvpe - DOS/ 16, Wn32, QNX, Os/2 1.x(all), Os/2-32

Library Functions and Macros 137

_exit, _Exit

Synopsis: #i nclude <stdlib. h>
void exit(int status);
void Exit(int status);

Description: The _exi t function causes normal program termination to occur.

1

2.

The functions registered by the at exi t or onexi t functions are not called.
All open file descriptors and directory streamsin the calling process are closed.

If the parent process of the calling processis executing a wai t or wai t pi d , itisnotified
of the calling process' s termination and the low order 8 bits of status are made availableto it.

If the parent process of the calling processis not executing a wai t or wai t pi d function,
the exit status code is saved for return to the parent process whenever the parent process
executes an appropriate subsequent wai t or wai t pi d.

Termination of aprocess does not directly terminate its children. The sending of a SI GHUP
signal as described below indirectly terminates children in some circumstances. Children of
aterminated process shall be assigned a new parent process ID, corresponding to an
implementation-defined system process.

If the implementation supports the SI GCHLD signal, a SI GCHLD signal shall be sent to the
parent process.

If the processis a controlling process, the SI GHUP signal will be sent to each processin the
foreground process group of the controlling terminal belonging to the calling process.

If the process is a controlling process, the controlling terminal associated with the session is
disassociated from the session, allowing it to be acquired by anew controlling process.

If the implementation supports job control, and if the exit of the process causes a process
group to become orphaned, and if any member of the newly-orphaned process group is
stopped, then a SI GHUP signal followed by a SI GCONT signal will be sent to each process
in the newly-orphaned process group.

These consequences will occur on process termination for any reason.

Returns: The _exi t function does not return to its caller.

See Also: abort,atexit, bgetcnd,cl ose,exec...,exit, Exit,getcnd,getenv, nain,
onexi t, put env, si gnal ,spawn. .., systemwait

Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

void main(int argc, char *argv[])

FI LE *fp;

138 Library Functions and Macros

_exit, _Exit

if(argec <= 1) {
fprintf(stderr, "M ssing argunment\n");
exit(EXIT_FAI LURE);

}

fp = fopen(argv[1l], "r");

if(fp == NULL) {
fprintf(stderr, "Unable to open "%’ \n", argv[l]);
_exit(EXIT_FAILURE);

}
fclose(fp);
_exit(EXIT_SUCCESS);

}
Classification: POSIX 1003.1
_ExitisISO C99
Systems: _exit - All, Netware

_Exit - All, Netware

Library Functions and Macros 139

exit

Synopsis: #i nclude <stdlib. h>
void exit(int status);

Description: Theexi t function causes normal program termination to occur.

First, all functions registered by the at exi t function are called in the reverse order of their
registration. Next, all open files are flushed and closed, and al files created by the t npf i | e function
areremoved. Finally, the return status is made available to the parent process. The statusvalueis
typically set to 0 to indicate successful termination and set to some other value to indicate an error.

Returns: Theexi t function does not returntoitscaller.
See Also: abort,atexit, _exit,onexit
Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

void main(int argc, char *argv[])

FI LE *fp;

if(argc <= 1) {

fprintf(stderr, "M ssing argunment\n");

exit(EXIT_FAILURE);
}

fp = fopen(argv[1], "r");
if(fp == NULL) {

fprintf(stderr, "Unable to open’

exit(EXIT_FAILURE);
}
fclose(fp);

exit(EXIT_SUCCESS);
}

Classification: ANSI

Systems: All, Netware

140 Library Functions and Macros

argv[1]);

exp

Synopsis: #i ncl ude <math. h>
doubl e exp(double x);

Description: The exp function computes the exponential function of x. A range error occurs if the magnitude of x is
too large.

Returns: The exp function returns the exponential value. When the argument is outside the permissible range,
the mat her r functioniscalled. Unlessthe default mat her r function isreplaced, it will set the
global variable er r no to ERANGE, and print a"RANGE error" diagnostic message using the st der r

stream.
See Also: | og, mat herr
Example: #i ncl ude <stdio. h>

#i ncl ude <mat h. h>
void main()

printf("%\n", exp(.5));
}

produces the following:

1.648721
Classification: ANSI

Systems: Math

Library Functions and Macros 141

_expand Functions

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <mal |l oc. h>
voi d * expand(void *mem blk, size t size);
void __ based(void) * bexpand(__segnent seg,
void __ based(void) *nmem bl Kk,
size_ t size);
void __far *_ fexpand(void __far *nmem blk,size_t size);
void __near * nexpand(void __near *mem bl Kk, size_ t size);

The _expand functions change the size of the previously allocated block pointed to by mem blk by
attempting to expand or contract the memory block without moving itslocation in the heap. The
argument size specifies the new desired size for the memory block. The contents of the memory block
are unchanged up to the shorter of the new and old sizes.

Each function expands the memory from a particular heap, as listed below:

Function Heap Expanded

_expand Depends on data model of the program

_bexpand Based heap specified by seg value

_fexpand Far heap (outside the default data segment)

_nexpand Near heap (inside the default data segment)

In asmall data memory model, the _expand function is equivalent to the _nexpand function; in a
large data memory model, the _expand function isequivalent to the _f expand function.

The _expand functions return the value mem_blk if it was successful in changing the size of the block.
Thereturn valueis NULL (_ NULLOFF for _bexpand) if the memory block could not be expanded to
the desired size. It will be expanded as much as possible in this case.

The appropriate _nsi ze function can be used to determine the new size of the expanded block.

cal | oc Functions, f r ee Functions, hal | oc, hf ree, mal | oc Functions, _nsi ze Functions,
real | oc Functions, sbr k

#i ncl ude <stdi o. h>
#i ncl ude <mal | oc. h>

voi d main()

char *buf;
char __far *buf2;

142 Library Functions and Macros

_expand Functions

Classification:

Systems:

buf = (char *) malloc(80);
printf("Size of buffer is %\n", _nsize(buf));
i f(_expand(buf, 100) == NULL) {

printf("Unable to expand buffer\n");

printf("New size of buffer is %\n", _nsize(buf));
buf2 = (char __far *) _fmalloc(2000);
printf("Size of far buffer is %\n", _fnsize(buf2));
if(_fexpand(buf2, 8000) == NULL) {

printf("Unable to expand far buffer\n");

printf("New size of far buffer is %\n",
_fmsize(buf2));

}

produces the following:

Size of buffer is 80

Unabl e to expand buffer

New si ze of buffer is 80

Size of far buffer is 2000
New si ze of far buffer is 8000

WATCOM

_expand - All

_bexpand - DOS/ 16, Wndows, QNX/ 16, OS/2 1.x(all)

_fexpand - DOS/ 16, Wndows, QNX/16, OS/2 1.x(all)

_nexpand - DOS, Wndows, Wn386, Wn32, QNX, O5/2 1.x, OS/2 1.x(MI),
oS/ 2- 32

Library Functions and Macros 143

fabs

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <mat h. h>
doubl e fabs(double x);

Thef abs function computes the absolute value of the argument x.
Thef abs function returns the absolute value of x.
abs, | abs, i maxabs

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

voi d main()

printf("% %\n", fabs(.5), fabs(-.5));

produces the following:

0. 500000 0.500000

Classification: ANSI

Systems:

Math

144 Library Functions and Macros

fclose

Synopsis: #i ncl ude <stdio. h>
int fclose(FILE *fp);

Description: Thef cl ose function closesthefile fp. If there was any unwritten buffered datafor thefile, itis
written out before thefileisclosed. Any unread buffered datais discarded. If the associated buffer was
automatically allocated, it is deall ocated.

Returns: Thef cl ose function returns zero if the file was successfully closed, or non-zero if any errors were
detected. When an error has occurred, er r no contains avalue indicating the type of error that has
been detected.

See Also: fcl oseal | ,fdopen, fopen,freopen, fsopen

Example: #i ncl ude <stdio. h>

void main()

FI LE *fp;

fp = fopen("stdio.h", "r");

if(fp !'= NULL) {

fclose(fp);
}
}

Classification: ANS

Systems: All, Netware

Library Functions and Macros 145

feloseall

Synopsis:

Description:

Returns:

See Also;

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>
int fcloseall(void);

Thef cl oseal | function closes all open stream files, except st di n, st dout , and st derr .

includes streams created (and not yet closed) by f dopen, f open and f r eopen.

Thef cl oseal | function returns the number of streams that were closed if no errors were
encountered. When an error occurs, ECF is returned.

fcl ose, fdopen, f open, f reopen, fsopen

#i ncl ude <stdio. h>
void main()
printf("The nunber of files closed is %\n",
fcloseall ());
}

WATCOM

All, Netware

146 Library Functions and Macros

This

fevt, _fevt, _wifevt

Synopsis:

Description:

Returns:

See Also;

Example:

Classification:

Systems:

#i nclude <stdlib. h>
char *fcvt(doubl e val ue,
int ndigits,
int *dec,
int *sign);
char *_fcvt(doubl e val ue,
int ndigits,
int *dec,
int *sign);
wchar _t *_wfcvt(doubl e val ue,
int ndigits,
int *dec,
int *sign);

Thef cvt function converts the floating-point number value into a character string. The parameter
ndigits specifies the number of digits desired after the decimal point. The converted number will be
rounded to this position.

The character string will contain only digits and is terminated by anull character. Theinteger pointed
to by dec will be filled in with avalue indicating the position of the decimal point relative to the start of
the string of digits. A zero or negative value indicates that the decimal point lies to the left of the first
digit. Theinteger pointed to by sign will contain O if the number is positive, and non-zero if the number
is negative.

The fcvt functionisidentical tof cvt. Use _fcvt for ANSI/ISO naming conventions.

The _wf cvt functionisidentical tof cvt except that it produces a wide-character string.

Thef cvt function returns a pointer to a static buffer containing the converted string of digits. Note:
ecvt and f cvt both use the same static buffer.

ecvt,gcvt,printf

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

void main()

{

char *str;

int dec, sign;

str = fevt(-123.456789, 5, &dec, &sign);

printf("str=%, dec=%l, sign=%\n", str,dec,sign);
}

produces the following:
str=12345679, dec=3, sign=-1

WATCOM
_fevt conforms to ANSI/ISO naming conventions

fcvt - Math
_fcvt - Math

Library Functions and Macros 147

fevt, _fevt, _wifevt

~wfcvt - Math

148 Library Functions and Macros

fdopen, _fdopen, _wfdopen

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdio. h>

FI LE *fdopen(int fildes,
FILE * fdopen(int fildes,
FILE * _wfdopen(int fildes,

const char *node);
const char *node);
const wchar _t *node);

Thef dopen function associates a stream with the file descriptor fildes which represents an opened file
or device. The descriptor was returned by oneof cr eat, dup, dup2, fcntl, open, pipe, or
sopen. The open mode mode must match the mode with which the file or device was originally
opened.

The argument mode is described in the description of the f open function.
The _f dopen functionisidentical to f dopen. Use _f dopen for ANSI/ISO naming conventions.

The _wf dopen functionisidentical to f dopen except that it accepts awide character string for the
second argument.

Thef dopen function returns a pointer to the object controlling the stream. This pointer must be
passed as a parameter to subsequent functions for performing operations on the file. If the open
operation fails, f dopen returnsa NULL pointer. When an error has occurred, er r no contains avalue
indicating the type of error that has been detected.

creat,dup,dup2, f open, freopen, fsopen,open, sopen

#i ncl ude <stdi o. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

voi d main()

int fil des;
FILE *fp;

', O_RDONLY);

process the stream

*/
fclose(fp);

} else {
close(fildes);

}

}
}

fdopen is POSIX 1003.1
_fdopen is not POSIX
_wfdopen is not POSIX

fdopen - All, Netware
_fdopen - All, Netware
_wfdopen - All

Library Functions and Macros 149

feclearexcept

Synopsis: #i ncl ude <fenv. h>
int feclearexcept(int __excepts);

Description: Thef ecl ear except function attempts to clear the supported floating-point exceptions represented
by its argument.

Returns: Thef ecl ear except function returns zero if the excepts argument is zero or if al the specified
exceptions were successfully cleared. Otherwise, it returns a nonzero value.

See Also: feget exceptfl ag, f erai seexcept, feset exceptfl ag, f et est except
Example: #i ncl ude <fenv. h>

void main(void)

{
}

Classification: C99

fecl earexcept (FE_OVERFLOW FE_UNDERFLOW) ;

150 Library Functions and Macros

__fedisableexcept

Synopsis: #i ncl ude <fenv. h>
void __ fedisabl eexcept(int __excepts);

Description: The __f edi sabl eexcept function disables the specified floating point exceptions.

Returns: No value is returned.
See Also: __feenabl eexcept
Example: #i ncl ude <fenv. h>

void main(void)

{
}

Classification: WATCOM

__fedisabl eexcept(FE_DI VBYZERO);

Library Functions and Macros 151

__feenableexcept

Synopsis: #i ncl ude <fenv. h>
void __ feenabl eexcept(int __excepts);

Description: The __f eenabl eexcept function enables the specified floating point exceptions.

Returns: No value is returned.
See Also: __fedi sabl eexcept
Example: #i ncl ude <fenv. h>

void main(void)

{
}

Classification: WATCOM

__feenabl eexcept (FE_DI VBYZERO) ;

152 Library Functions and Macros

fegetenv

Synopsis: #i ncl ude <fenv. h>
int fegetenv(fenv_t *_ _envp);

Description: Thef eget env function attempts to store the current floating-point environment in the object pointed

to by envp.

Returns: Thef eget env function returns zero if the environment was successfully stored. Otherwise, it returns
anonzero value.

See Also: f ehol dexcept, f eset env, f eupdat eenv

Example: #i ncl ude <stdio. h>

#i ncl ude <fenv. h>
void main(void)

{

fenv_t env;
fegetenv(&env);

Classification: C99

Library Functions and Macros 153

fegetexceptflag

Synopsis: #i ncl ude <fenv. h>
int fegetexceptflag(fexcept t * flagp, int __excepts);

Description: Thef eget except f | ag function attempts to store a representation of the states of the floating-point
status flags indicated by the argument exceptsin the object pointed to by the argument flagp.

Valid exceptions are FE_ | NVALI DFE_DENORVAL FE_DI VBYZEROFE_ OVERFLOW
FE_UNDERFLOWFE_ | NEXACT

Thevalue FE_ALL_ EXCEPT isthelogical OR of these values.

Returns: Thef eget except f | ag function returns zero if the representation was successfully stored.
Otherwise, it returns a nonzero value.

See Also: fecl earexcept, f erai seexcept, feset exceptfl ag, f et est except
Example: #i ncl ude <fenv. h>

void main(void)

{ fexcept _t flags;

} fegetexceptflag(& lags, FE DI VBYZERO);

Classification: C99

154 Library Functions and Macros

fegetround

Synopsis: #i ncl ude <fenv. h>
int fegetround(void);

Description: Thef eget r ound function gets the current rounding direction.

Returns: Thef eget r ound function returns the value of the rounding direction macro representing the current
rounding direction or a negative value if thereis no such rounding direction macro or the current
rounding direction is not determinable.

Valid rounding modes are FE_ TONEAREST FE_ DOWNWARD FE_ TONARDZEROFE_ UPWARD
See Also; f eset round

Example: #i ncl ude <stdio. h>
#i ncl ude <fenv. h>

void main(void)
{
i nt node;
node = fegetround();
if (node == FE_TONEAREST)
printf("Nearest\n");
else if (nmobde == FE_DOMNWARD)
printf("Down\n");
else if (nmbde == FE_TOWARDZERO)
printf("To Zero\n");
else if (nobde == FE_UPWARD)
printf("Up\n");
}

Classification: C99

Library Functions and Macros 155

feholdexcept

Synopsis: #i ncl ude <fenv. h>
int fehol dexcept(fenv_t *_ _envp);

Description: Thef ehol dexcept function saves the current floating-point environment in the object pointed to by
envp, clears the floating-point status flags, and then installs a non-stop (continue on floating-point
exceptions) mode, if available, for all floating-point exceptions.

Returns: Thef ehol dexcept function returns zero if and only if non-stop floating-point exception handling
was successfully installed.

See Also: f eget env, f eset env, f eupdat eenv
Example: #i ncl ude <fenv. h>
void main(void)

{

fenv_t env;
f ehol dexcept (&env);

}

Classification: C99

156 Library Functions and Macros

feof

Synopsis:

Description:

Returns:
See Also;

Example:

#i ncl ude <stdi o. h>
int feof(FILE *fp);

Thef eof function tests the end-of-file indicator for the stream pointed to by fp. Because thisindicator
is set when an input operation attempts to read past the end of the filethe f eof function will detect the
end of the file only after an attempt is made to read beyond the end of thefile. Thus, if afile contains
10 lines, the f eof will not detect end of file after the tenth lineis read; it will detect end of file once the
program attempts to read more data.

Thef eof function returns non-zero if the end-of-file indicator is set for fp.
clearerr,ferror,fopen,freopen,perror,read,strerror

#i ncl ude <stdio. h>
voi d process_record(char *buf)

printf("%\n", buf);

voi d main()
{
FI LE *fp;
char buffer[100];

fp = fopen("file", "r");
fgets(buffer, sizeof(buffer), fp);
while(! feof(fp)) {

process_record(buffer);

fgets(buffer, sizeof(buffer), fp);

}
fclose(fp);
}

Classification: ANSI

Systems:

All, Netware

Library Functions and Macros 157

feraiseexcept

Synopsis: #i ncl ude <fenv. h>
int feraiseexcept(int __excepts);

Description: Thef er ai seexcept function attempts to raise the supported floating-point exceptions represented
by its argument.

Returns: Thef er ai seexcept function returns zero if the excepts argument is zero or if al the specified
exceptions were successfully raised. Otherwise, it returns anonzero value.

See Also: fecl earexcept, f eget exceptfl ag, f et est except
Example: #i ncl ude <fenv. h>

void main(void)

{
}

Classification: C99

ferai seexcept (FE_D VBYZERO) ;

158 Library Functions and Macros

ferror

Synopsis: #i ncl ude <stdio. h>
int ferror(FILE *fp);

Description: Thef er r or function tests the error indicator for the stream pointed to by fp.

Returns: Thef err or function returns non-zero if the error indicator is set for fp.
See Also: clearerr,feof,perror,strerror
Example: #i ncl ude <stdio. h>

void main()

FI LE *fp;
int c;

fp = fopen("file", "r");
if(fp !'=NUL) {
c = fgetc(fp);

if(ferror(fp)) {
printf("Error reading file\n");

}
fclose(fp);
}

Classification: ANSI

Systems: All, Netware

Library Functions and Macros 159

fesetenv

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <fenv. h>
int fesetenv(const fenv_t *_ envp);

Thef eset env function attempts to establishe the floating-point environment represented by the
object pointed to by envp. The argument envp shall point to an object set by acall to f eget env or
f ehol dexcept , or equal the FE_DFL__ ENV macro. Note that fesetenv merely installs the state of
the floating-point status flags represented through its argument, and does not raise these floating-point
exceptions.

Thef eset env function returns zero if the environment was successfully established. Otherwise, it
returns a nonzero value.

f eget env, f ehol dexcept , f eupdat eenv
#i ncl ude <fenv. h>

void main(void)

{
fenv_t env;
fegetenv(&env);
fesetenv(FE_DFL_ENV);
fesetenv(&env);

}

Classification: C99

160 Library Functions and Macros

fesetexceptflag

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <fenv. h>
int fesetexceptflag(const fexcept t * flagp, int __excepts);

Thef eset except f | ag function attemptsto set the floating-point status flags indicated by the
argument excepts to the states stored in the object pointed to by flagp. The value of *flagp shall have
been set by apreviouscall to f eget except f | ag whose second argument represented at least those
floating-point exceptions represented by the argument excepts. This function does not raise
floating-point exceptions, but only sets the state of the flags.

Thef eset except f | ag function returns zero if the excepts argument is zero or if all the specified
flags were successfully set to the appropriate state. Otherwise, it returns a nonzero value.

fecl earexcept, f eget exceptfl ag, f et est except
#i ncl ude <fenv. h>

void main(void)

{
fexcept _t flags;
fgetexceptflag(& | ags, FE DENORMAL| FE | NVALID);
fsetexceptflag(&flags, FE_INVALID);

}

Classification: C99

Library Functions and Macros 161

fesetround

Synopsis: #i ncl ude <fenv. h>
int fesetround(int _ _round);

Description: Thef eset r ound function establishes the rounding direction represented by its argument round. |If
the argument is not equal to the value of arounding direction macro, the rounding direction is not

changed.

Returns: Thef eset r ound function returns a zero value if and only if the requested rounding direction was
established.

See Also: f eget round

Example: #i ncl ude <fenv. h>

void main(void)

{
}

Classification: C99

fesetround(FE_UPWARD);

162 Library Functions and Macros

fetestexcept

Synopsis:

Description:

Returns:

See Also;

Example:

#i ncl ude <fenv. h>
int fetestexcept(int __excepts);

Thef et est except function determines which of a specified subset of the floatingpoint exception
flags are currently set. The excepts argument specifies the floating point status flags to be queried.

Thef et est except function returns the value of the bitwise OR of the floating-point exception
macros corresponding to the currently set floating-point exceptions included in excepts.

fecl earexcept, f eget exceptfl ag, f er ai seexcept, f eset exceptfl ag

#i ncl ude <stdi o. h>
#i ncl ude <fenv. h>

void main(void)

{

i nt excepts;
f ecl ear except (FE_DI VBYZERO) ;

...code that may cause a divide by zero exception

excepts = fetestexcept(FE DI VBYZERO);
if (excepts & FE_DI VBYZERO
printf("Divide by zero occurred\n");

}

Classification: C99

Library Functions and Macros 163

feupdateenv

Synopsis: #i ncl ude <fenv. h>
i nt feupdateenv(const fenv_t *_ envp);

Description: Thef eupdat eenv function attemptsto save the currently raised floating-point exceptionsin its
automatic storage, installs the floating-point environment represented by the object pointed to by envp,
and then rai ses the saved floating-point exceptions. The argument envp shall point to an object set by a
call to feholdexcept or fegetenv, or equal a floating-point environment macro.

Returns: Thef eupdat eenv function returns zero if all the actions were successfully carried out. Otherwise, it
returns a nonzero value.

See Also: f eget env, f ehol dexcept , f eset env

Example: #i ncl ude <fenv. h>

void main(void)

{
fenv_t env;
fegetenv(&env);
fesetenv(FE_DFL_ENV);
f eupdat eenv(&env);

}

Classification: C99

164 Library Functions and Macros

fflush

Synopsis:

Description:

Returns:

See Also;

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>
int fflush(FILE *fp);

If thefile fp is open for output or update, the f f | ush function causes any unwritten data to be written
tothefile. If thefilefpisopen for input or update, the f f | ush function undoes the effect of any
preceding unget c operation on the stream. If thevalue of fpis NULL, then al filesthat are open will
be flushed.

Thef f | ush function returns non-zero if awrite error occurs and zero otherwise. When an error has
occurred, er r no contains avalue indicating the type of error that has been detected.

fgetc,fgets,flushall,fopen,getc,gets,setbuf,setvbuf,ungetc

#i ncl ude <stdi o. h>
#i ncl ude <coni o. h>

void main()

printf("Press any key to continue...");
fflush(stdout);
getch();

ANSI

All, Netware

Library Functions and Macros 165

ffs

Synopsis: #i ncl ude <strings. h>
int ffs(int i);

Description: Thef f s findsthefirst bit set, beginning with the least significant bit, ini. Bitsare numbered starting
at one (the least significant hit).

Returns: Thef f s function returns the index of thefirst bit set. 1f i isO, f f s returns zero.
See Also: _lrotl, _lrotr,_rotl,_rotr
Example: #i ncl ude <stdio. h>

#i ncl ude <strings. h>

int main(void)

{
printf("%\n", ffs(0));
printf("%\ n", ffs(16));
printf("%\ n", ffs(127));
printf("%\ n", ffs(-16));
return(0);

}

produces the following:

0

5

1

5

Classification: POSIX

Systems: All, Netware

166 Library Functions and Macros

fgetc, fgetwc

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>

int fgetc(FILE *fp);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>

wint_t fgetwe(FILE *fp);

Thef get ¢ function gets the next character from the file designated by fp. The character is si gned.

Thef get we functionisidentical to f get ¢ except that it gets the next multibyte character (if present)
from the input stream pointed to by fp and convertsit to awide character.

Thef get ¢ function returns the next character from the input stream pointed to by fp. If the streamis
at end-of-file, the end-of-file indicator is set and f get ¢ returns EOF. If aread error occurs, the error
indicator isset and f get ¢ returns EOF.

Thef get we function returns the next wide character from the input stream pointed to by fp. If the
stream is at end-of-file, the end-of-file indicator is set and f get we returns WECF. If aread error
occurs, the error indicator is set and f get we returns WEOF. If an encoding error occurs, er r no is set
to El LSEQand f get we returns WVEOF.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
fgetchar,fgets,fopen,getc,getchar,gets,ungetc

#i ncl ude <stdi o. h>

voi d main()

FI LE *fp;
int c;

fp = fopen("file", "r");
if(fp !'= NULL) {
while((c = fgetc(fp)) !'= EOF)
fputc(c, stdout);
fclose(fp);
}
}

fgetcisANS
fgetwc isANSI

fgetc - All, Netware
fgetwe - All

Library Functions and Macros 167

fgetchar, _fgetchar, _fgetwchar

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdio. h>

int fgetchar(void);

int fgetchar(void);
wint t fgetwchar(void);

Thef get char functionisequivalent to f get ¢ with the argument st di n.

The _f get char functionisidentical tof get char. Use _f get char for ANSI naming
conventions.

The _f get wchar functionisidentical to f get char except that it gets the next multibyte character
(if present) from the input stream pointed to by st di n and convertsit to awide character.

Thef get char function returns the next character from the input stream pointedto by st di n. If the
stream is at end-of-file, the end-of-file indicator is set and f get char returns EOF. |If aread error
occurs, the error indicator is set and f get char returns ECF.

The _f get wechar function returns the next wide character from the input stream pointed to by
st di n. If thestreamisat end-of-file, the end-of-file indicator isset and _f get wchar returns
VECF. If aread error occurs, the error indicator isset and _f get wechar returns\WECF. If an
encoding error occurs, er r no isset to El LSEQand _f get wehar returns WEOF.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
fgetc,fgets,fopen,getc,getchar,gets,ungetc

#i ncl ude <stdio. h>

void main()

FI LE *fp;
int c;

fp = freopen("file", "r", stdin);
if(fp !'= NULL) {
while((c = fgetchar()) !'= ECF)
fputchar(c);
fclose(fp);
}
}

WATCOM

fgetchar - All, Netware
_fgetchar - All, Netware
_fgetwchar - All

168 Library Functions and Macros

fgetpos

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <stdio. h>
int fgetpos(FILE *fp, fpos_t *pos);

Thef get pos function stores the current position of the file fp in the object pointed to by pos. The
value stored is usable by the f set pos function for repositioning the file to its position at the time of
the call to the f get pos function.

Thef get pos function returns zero if successful, otherwise, the f get pos function returns a non-zero
value. When an error has occurred, er r no contains a value indicating the type of error that has been
detected.

fopen, f seek, f set pos,ftell

#i ncl ude <stdi o. h>

void main()
{
FILE *fp;
fpos t position;
aut o char buffer[80];

fp = fopen("file", "r");
if(fp !'= NULL) {

Classification: ANSI

Systems:

fgetpos(fp, &position); /* get position */
fgets(buffer, 80, fp); /* read record * |
fsetpos(fp, &position); /* set position */
fgets(buffer, 80, fp); /* read sane record */
fclose(fp);
}
}
All, Netware

Library Functions and Macros 169

fgets, fgetws

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>

char *fgets(char *buf, int n, FILE *fp);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>

wchar _t *fgetws(wchar _t *buf, int n, FILE *fp);

Thef get s function gets a string of characters from the file designated by fp and stores them in the
array pointed to by buf. The f get s function stops reading characters when end-of-file is reached, or
when anewline character is read, or when n-1 characters have been read, whichever comesfirst. The
new-line character is not discarded. A null character is placed immediately after the last character read
into the array.

Thef get ws functionisidentical to f get s except that it gets a string of multibyte characters (if
present) from the input stream pointed to by fp, converts them to wide characters, and stores them in the
wide-character array pointed to by buf. In this case, n specifies the number of wide characters, less one,
to be read.

A common programming error is to assume the presence of a new-line character in every string that is
read into the array. A new-line character will not be present when more than n-1 characters occur
before the new-line. Also, anew-line character may not appear asthe last character in afile, just before
end-of-file.

Theget s functionissimilar to f get s except that it operates with st di n, it has no size argument,
and it replaces a newline character with the null character.

Thef get s function returns buf if successful. NULL isreturned if end-of-fileis encountered, or aread
error occurs. When an error has occurred, er r no contains a value indicating the type of error that has
been detected.

fgetc, fgetchar, fopen, getc, getchar, gets,ungetc

#i ncl ude <stdi o. h>
voi d main()

FILE *fp;
char buffer[80];

fp = fopen("file", "r");
if(fp !I'= NULL) {
while(fgets(buffer, 80, fp) !'= NULL)
fputs(buffer, stdout);
fclose(fp);

}
}

fgetsis ANSI
fgetwsis ANSI

fgets - All, Netware
fgetws - All

170 Library Functions and Macros

_fieeetomsbin

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <math. h>
extern int _fieeetomshin(float *src, float *dest);

The _fi eeet onsbi n function loads the float pointed to by src in IEEE format and convertsit to
Microsoft binary format, storing the result into the float pointed to by dest.

For _fi eeet onsbi n, IEEE Nan'sand Infinitieswill cause overflow. |EEE denormalswill be
converted if within range. Otherwise, they will be converted to 0 in the Microsoft binary format.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft
binary format doublesis 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors
became standard.

The fi eeet onsbi n function returns O if the conversion was successful. Otherwise, it returns 1 if
conversion would cause an overflow.

_di eeet onsbi n, _dnsbi nt oi eee, fnsbi nt oi eee

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

voi d main()

float fieee, fnsb;
doubl e di eee, dnsb;

fieee
di eee

0.5;
-2.0;

/* Convert |EEE format to Mcrosoft binary format */
_fieeetonsbin(& ieee, & nsb);

_di eeet onsbi n(&di eee, &dnsb);

/* Convert Mcrosoft binary format back to | EEE format */
_frnebintoi eee(& nmsb, &fieee);

_dnsbi nt oi eee(&dnsb, &dieee);

/* Display results */

printf("fieee = %, dieee = %\n", fieee, dieee);

}
produces the following:
fi eee = 0.500000, dieee = -2.000000
WATCOM

All, Netware

Library Functions and Macros 171

filelength

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <unistd. h>
long filelength(int fildes);
__int6d4 filelengthi64(int fildes);

Thef i | el engt h function returns, as a 32-bit long integer, the number of bytesin the opened file
indicated by the file descriptor fildes.

The function returns, as a 64-bit integer, the number of bytesin the opened file indicated by thefile
descriptor fildes.

If an error occursin f i | el engt h, (-1L) isreturned.

If an error occursin, (-1164) is returned.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
Otherwise, the number of bytes written to the file is returned.

fstat,| seek,tell

#i ncl ude <sys/types. h>
#i ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <unistd. h>

void main(void)

{
int fildes;
/* open a file for input */
fildes = open("file", O_RDONLY);
if(fildes '=-1)
printf("Size of fileis %d bytes\n",
filelength(fildes));
close(fildes);
}
}

produces the following:
Size of file is 461 bytes
WATCOM

All, Netware

172 Library Functions and Macros

FILENAME_MAX

Synopsis:

Description:

Returns:

Example:

#i ncl ude <stdi o. h>
#defi ne FI LENAME MAX 123

The FI LENAME_ MAX macro is the size of an array of char big enough to hold a string naming any file
that the implementation expects to open; If thereis no practical file name length limit,

FI LENAME _VAX is the recommended size of such an array. Asfile name string contents must meet
other system-specific constraints, some strings of length FI LENAVE_ MAX may not work.

FI LENAMVE_MAX typically sizes an array to hold afile name.

The FI LENAME_ MAX macro returns a positive integer value.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

int main(int argc, char *argv[])

{
if(argc) {
char fname[FI LENAVE MAX] ;
strcpy(fname, argv[O0]);
puts(fnane);
return(0);
}

Classification: ANSI

Systems:

MACRO

Library Functions and Macros 173

fileno

Synopsis: #i ncl ude <stdio. h>
int fileno(FILE *stream);

Description: Thef i | eno function returns the number of the file descriptor for the file designated by stream. This
number can be used in POSIX input/output calls anywhere the value returned by open can be used.
The following symbolic valuesin <uni st d. h> define the file descriptors that are associated with the
C language stdin, stdout, and stderr files when the application is started.

Value Meaning
STDIN_FILENO Standard input file number, stdin (0)
STDOUT_FILENO Standard output file number, stdout (1)
STDERR_FILENO Standard error file number, stderr (2)
Returns: Thef i | eno function returns the number of the file descriptor for the file designated by stream. If an

error occurs, avaue of -1 isreturned and er r no is set to indicate the error.
See Also: open
Example: #i ncl ude <stdio. h>
voi d main()
FI LE *stream
stream = fopen("file", "r");

printf("File nunber is %\n", fileno(stream));
fclose(stream);

}

produces the following:
File nunber is 7
Classification: POSIX 1003.1

Systems: All, Netware

174 Library Functions and Macros

_finite

Synopsis:

Description:

Returns:
See Also:

Example:

Classification:

Systems:

#i ncl ude <fl oat. h>
int finite(double x);

The _fi ni t e function determines whether the double precision floating-point argument isavalid
number (i.e., not infinite and not a NAN).

The _fi ni t e function returns O if the number is not valid and non-zero otherwise.
_clear87, control 87, control fp, fpreset,printf, status87

#i ncl ude <stdio. h>
#i ncl ude <fl oat. h>

void main()

printf("9\n", (_finite(1.797693134862315e+308))

? "Vvalid" : "lnvalid");
printf("%\n", (_finite(1.797693134862320e+308))
? "Valid" : "Invalid");
}
produces the following:
Valid
Invalid
WATCOM
Math

Library Functions and Macros 175

_floodfill Functions

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <graph. h>
short _FAR floodfill(short x, short vy,
short stop_color);

short _FAR floodfill_w(double x, double vy,

short stop_color);
The floodfill functionsfill an areaof thescreen. The fl oodfi || function usestheview
coordinate system. The fl oodfi | | _wfunction usesthe window coordinate system.

Thefilling starts at the point (x, y) and continuesin all directions: when a pixel isfilled, the
neighbouring pixels (horizontally and vertically) are then considered for filling. Filling isdone using
the current color and fill mask. No filling will occur if the point (x, y) lies outside the clipping region.

If the argument stop_color isavalid pixel vaue, filling will occur in each direction until a pixel is
encountered with a pixel value of stop_color. Thefilled areawill bethe areaaround (x, y), bordered
by stop_color. No filling will occur if the point (x, y) hasthe pixel value stop_color.

If stop_color hasthe value (-1), filling occurs until a pixel is encountered with a pixel value different
from the pixel value of the starting point (x, y) . No filling will occur if the pixel value of the point
(x,y) isthecurrent color.

The _fl oodfill functionsreturn zero when no filling takes place; a non-zero value is returned to
indicate that filling has occurred.

_setcliprgn, _setcolor, setfillmsk, setplotaction

#i ncl ude <coni o. h>
#i ncl ude <graph. h>

mai n()

_setvideonode(_VRES16COLCR);
_setcolor(1);

_ellipse(_GBORDER, 120, 90, 520, 390);
_setcolor(2);

_floodfill(320, 240, 1);

getch();

_setvideonode(_ DEFAULTMODE);

}

Classification: _floodfill is PC Graphics

Systems:

_floodfill - DOS, QX
_floodfill _w - DOS, QNX

176 Library Functions and Macros

floor

Synopsis: #i ncl ude <math. h>
doubl e fl oor(double x);

Description: Thef | oor function computes the largest integer not greater than x.

Returns: Thef | oor function computes the largest integer not greater than x, expressed asa doubl e.
See Also: ceil,fnod
Example: #i ncl ude <stdio. h>

#i ncl ude <mat h. h>

voi d main()

printf("%\n", floor(-3.14))
printf("%\n", floor(-3.));
printf("%\n", floor(0.));
printf("%\n", floor(3.14));
printf("%\n", floor(3.));
}

produces the following:

- 4. 000000

- 3. 000000

0. 000000

3. 000000

3. 000000

Classification: ANSI

Systems: Math

Library Functions and Macros 177

flushall

Synopsis: #i ncl ude <stdio. h>
int flushall(void);

Description: Thefl ushal | function clears all buffers associated with input streams and writes any buffers
associated with output streams. A subsequent read operation on an input file causes new data to be read
from the associated file or device.

Callingthefl ushal I functioniseguivaent to callingthe f f | ush for all open stream files.

Returns: Thef |l ushal | function returns the number of open streams. When an output error occurs while
writing to afile, the er r no global variable will be set.

See Also: fopen, fflush
Example: #i ncl ude <stdio. h>

void main()

printf("The nunber of open files is %\n",
flushall ());
}

produces the following:

The nunber of open files is 4
Classification: WATCOM

Systems: All, Netware

178 Library Functions and Macros

fmod

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <mat h. h>

doubl e fnod(double x, double y);

The f mod function computes the floating-point remainder of x/y, even if the quotient x/y is not

representable.

Thef nmod function returns the value x - (i * y), for some integer i such that, if y is hon-zero, the result
has the same sign as x and magnitude less than the magnitude of y. If the value of y is zero, then the

value returned is zero.
cei |l ,fabs,fl oor

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

void main()

printf("%\n", frod(4

printf("%\n", frod(-4

printf("%\n", frod(4.

printf("%\n", fnod(-4
}

produces the following:
0. 500000
- 0. 500000

0. 500000
- 0. 500000

ANSI

Math

Library Functions and Macros 179

_fmsbintoieee

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <math. h>
extern int _fnebintoieee(float *src, float *dest);

The _f mebi nt oi eee function loads the float pointed to by src in Microsoft binary format and
convertsit to |EEE format, storing the result & into the float pointed to by dest.

The range of Microsoft binary format floats is 2.938736e-39 to 1.701412e+38. The range of Microsoft
binary format doublesis 2.938735877056e-39 to 1.701411834605e+38.

Microsoft Binary Format was used by early versions of Microsoft QuickBASIC before coprocessors
became standard.

The _f mebi nt oi eee function returns O if the conversion was successful. Otherwise, it returns 1 if
conversion would cause an overflow.

_di eeet onshbi n, _dnsbi nt oi eee, fieeetonshin

#i ncl ude <stdi o. h>
#i ncl ude <mat h. h>

void main()

float fieee, fnsb;
doubl e di eee, dnsb;

fieee
di eee

0.5;
-2.0;

/* Convert |EEE format to Mcrosoft binary format */
_fieeetonsbin(& ieee, & nsb);
_di eeet onsbi n(&di eee, &dnsb);

/* Convert M crosoft binary format back to | EEE format */
_fnsbintoi eee(& nsh, &fieee);

_dnsbi nt oi eee(&dnshb, &dieee);

/* Display results */

printf("fieee = %6, dieee = %6\n", fieee, dieee);

}

produces the following:

fieee = 0.500000, dieee = -2.000000

Classification: WATCOM

Systems:

All, Netware

180 Library Functions and Macros

fopen, _wfopen

Synopsis:

Safer C:

Description:

#i ncl ude <stdio. h>
FI LE *fopen(const char *filenane, const char *node);
FILE * _wfopen(const wchar _t *fil enane,

const wchar_t *node);

The Safer C Library extension providesthe f open_s function which is asafer alternativeto f open.
Thisnewer f open_s function is recommended to be used instead of the traditional "unsafe’ f open
function.

The f open function opens the file whose name is the string pointed to by filename, and associates a
stream with it. The argument mode points to a string beginning with one of the following sequences:

Mode Meaning

"t open file for reading

"w! create file for writing, or truncate to zero length

"a' append: open file or create for writing at end-of-file

"+t open file for update (reading and/or writing)

"o create file for update, or truncate to zero length

"at+" append: open file or create for update, writing at end-of-file

In addition to the above characters, you can also include one of the following characters in mode to
specify the trand ation mode for newline characters:

t Theletter "t" may be added to any of the above sequences in the second or later position
to indicate that thefileis (or must be) atext file.

b Theletter "b" may be added to any of the above sequencesin the second or later
position to indicate that the file is (or must be) abinary file (an ANSI requirement for
portability to systems that make a distinction between text and binary files).

Under QNX, there is no difference between text files and binary files.

Y ou can aso include one of the following characters to enable or disable the "commit" flag for the
associated file.

c Theletter "¢" may be added to any of the above sequences in the second or later
position to indicate that any output is committed by the operating system whenever a
flush(fflushorflushall)isdone.

This option is not supported under Netware.

n The letter "n" may be added to any of the above sequencesin the second or later
position to indicate that the operating system need not commit any output whenever a
flushis done. It also overrides the global commit flag if you link your program with
COVMODE. OBJ. Thegloba commit flag default is "no-commit” unless you explicitly
link your program with COVMODE. OBJ.

Library Functions and Macros 181

fopen, _wfopen

This option is not supported under Netware.

The"t", "c", and "n" mode options are extensions for f open and _f dopen and should not be used
where ANSI portability is desired.

Opening afile with read mode (r asthe first character in the mode argument) fails if the file does not
exist or it cannot be read. Opening afile with append mode (a asthefirst character in the mode
argument) causes all subsequent writesto the file to be forced to the current end-of-file, regardless of
previous callsto the f seek function. When afileis opened with update mode (+ as the second or later
character of the mode argument), both input and output may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed. However,
writing may not be followed by reading without an intervening call to the f f | ush function or to afile
positioning function (f seek, fset pos, rew nd). Similarly, reading may not be followed by
writing without an intervening call to afile positioning function, unless the read resulted in end-of-file.

The _wf open function isidentical to f open except that it accepts wide-character string arguments for
filename and mode.

Returns: The f open function returns a pointer to the object controlling the stream. This pointer must be passed
as a parameter to subsequent functions for performing operations on the file. 1f the open operation fails,
f open returns NULL. When an error has occurred, er r no contains a value indicating the type of

error that has been detected.
See Also: fcl ose,fcl oseal |, fdopen, fopen_s,freopen,freopen_s, fsopen,open, sopen
Example: #i ncl ude <stdio. h>

voi d main()
FI LE *fp;

fp = fopen("file", "r");
if(fp !'= NULL) {
/* rest of code goes here */
fclose(fp);
}
}

Classification: fopenis ANS|
_wfopenisnot ANSI

Systems: fopen - All, Netware
_wfopen - Al

182 Library Functions and Macros

fopen_s, _wfopen_s

Synopsis:

Constraints:

Description:

#define __STDC WANT_LIB EXT1__ 1
#i ncl ude <stdio. h>
errno_t fopen_s(FILE * restrict * restrict streanptr,
const char * restrict filenane,
const char * restrict node);
errno_t _wopen_s(FILE * restrict * restrict streanptr,
const wchar_t * restrict fil enane,
const wchar_t * restrict node);

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler
will beinvoked and f open__s will return a non-zero value to indicate an error, or the
runtime-constraint handler aborts the program.

None of streamptr, filename, or mode shall be anull pointer. If thereisaruntime-constraint violation,
f open_s does not attempt to open afile. Furthermore, if streamptr isnot anull pointer, f open_s
sets * streamptr to the null pointer.

Thef open_s function opens the file whose name is the string pointed to by filename, and associates a
stream with it. The mode string shall be as described for fopen, with the addition that modes starting
with the character 'w’ or '@ may be preceded by the character 'u’, see below:

Mode Meaning

"uw" truncate to zero length or create text file for writing, default permissions

"ua" append; open or create text file for writing at end-of-file, default permissions

" uwb" truncate to zero length or create binary file for writing, default permissions

"uab" append; open or create binary file for writing at end-of-file, default permissions

" uw+" truncate to zero length or create text file for update, default permissions

"uat" append; open or create text file for update, writing at end-of-file, default permissions

"uw+b or uwb+" truncate to zero length or create binary file for update, default permissions

"ua+b or uab+" append; open or create binary file for update, writing at end-of-file, default
permissions

To the extent that the underlying system supports the concepts, files opened for writing shall be opened
with exclusive (also known as non-shared) access. If thefileisbeing created, and the first character of
the mode string isnot ’u’, to the extent that the underlying system supportsit, the file shall have afile
permission that prevents other users on the system from accessing thefile. If thefileis being created
and first character of the mode string is’u’, then by the time the file has been closed, it shall have the
system default file access permissions. If the file was opened successfully, then the pointer to FILE
pointed to by streamptr will be set to the pointer to the object controlling the opened file. Otherwise,
the pointer to FILE pointed to by streamptr will be set to anull pointer.

In addition to the above characters, you can a so include one of the following charactersin mode to
specify the trang ation mode for newline characters:

Library Functions and Macros 183

fopen_s, _wfopen_s

Returns:

See Also:

t The letter "t" may be added to any of the above sequences in the second or later position
to indicate that the fileis (or must be) atext file.

b Theletter "b" may be added to any of the above sequencesin the second or later
position to indicate that the fileis (or must be) a binary file (an ANSI requirement for
portability to systems that make a distinction between text and binary files).

Under QNX, thereis no difference between text files and binary files.

Y ou can aso include one of the following characters to enable or disable the "commit" flag for the
associated file.

c Theletter "c" may be added to any of the above sequencesin the second or later
position to indicate that any output is committed by the operating system whenever a
flush (fflushorflushall)isdone

This option is not supported under Netware.

n Theletter "n" may be added to any of the above sequencesin the second or later
position to indicate that the operating system need not commit any output whenever a
flushisdone. It also overrides the global commit flag if you link your program with
COVMODE. OBJ. The global commit flag default is "no-commit" unless you explicitly
link your program with COMMODE. OBJ.

This option is not supported under Netware.

The"t","c", and "n" mode options are extensions for f open_ s and should not be used where ANSI
portability is desired.

Opening afile with read mode (r asthefirst character in the mode argument) fails if the file does not
exist or it cannot be read. Opening afile with append mode (a asthe first character in the mode
argument) causes all subsequent writesto the file to be forced to the current end-of-file, regardless of
previous callsto the f seek function. When afileis opened with update mode (+ as the second or later
character of the mode argument), both input and output may be performed on the associated stream.

When a stream is opened in update mode, both reading and writing may be performed. However,
writing may not be followed by reading without an intervening call to the f f | ush function or to afile
positioning function (f seek, fsetpos, rew nd). Similarly, reading may not be followed by
writing without an intervening call to afile positioning function, unless the read resulted in end-of-file.

The _wf open_s functionisidentical tof open_s except that it accepts wide-character string
arguments for filename and mode.

Thef open_s function returns zero if it opened thefile. If it did not open the file or if therewas a
runtime-constraint violation, f open_s returns anon-zero value.

fcl ose,fcl oseal |, fdopen, fopen,freopen,freopen_s, fsopen,open,sopen

184 Library Functions and Macros

fopen_s, _wfopen_s

Example: #define __ STDC WANT_LIB EXT1 1
#i ncl ude <stdio. h>

void main()

errno_t rc;
FI LE *fp;

rc = fopen_s(& p, "file", "r");
if(fp !'= NULL) {
/* rest of code goes here */
fclose(fp);
}
}

Classification: fopen sis TR 24371
_wfopen sisWATCOM

Systems: fopen_s - Al, Netware
_wWopen_s - Al

Library Functions and Macros 185

FP_OFF

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <i 86. h>
unsi gned FP_OFF(void __ far *far_ptr);

The FP_ OFF macro can be used to obtain the offset portion of the far pointer value given in far_ptr.
The macro returns an unsigned integer value which is the offset portion of the pointer value.
FP_SEG MK_FP,segr ead

#i ncl ude <stdi o. h>
#i ncl ude <i 86. h>

char Col our Tabl e[256] [3] ;
void main()

uni on REGPACK r;
int i;

/* read bl ock of colour registers */

r.h.ah = 0x10;
r.h.al = 0x17;
#if defined(__386_)
r.x.ebx = 0;
r.x.ecx = 256;
r.x.edx = FP_OFF(Col ourTable);
r.wds =r.wfs = r.wgs = FP_SEF &);
#el se
r.w. bx = 0;
r.w.cx = 256;
r.w. dx = FP_OFF(Col ourTable);
#endi f
r.w.es = FP_SEGE Col ourTable);
intr(O0x10, &);
for(i =0; i < 256; i++) {
printf("Colour index = % "
"{ Red=%l, G een=%d, Blue=% }\n",
I,
Col our Tabl e[i][0],
Col our Tabl e[i][1],
Col our Table[i][2]);
}
}

Classification: Intel

Systems:

MACRO

186 Library Functions and Macros

FP_SEG

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <i 86. h>
unsi gned FP_SEE void __ far *far_ptr);

The FP_ SEG macro can be used to obtain the segment portion of the far pointer value given in far_ptr.
The macro returns an unsigned integer value which is the segment portion of the pointer value.
FP_OFF, MK_FP,segr ead

#i ncl ude <stdi o. h>
#i ncl ude <i 86. h>

char Col our Tabl e[256] [3] ;
void main()

uni on REGPACK r;
int i;

/* read bl ock of colour registers */

r.h.ah = 0x10;
r.h.al = 0x17;
#if defined(__386_)
r.x.ebx = 0;
r.x.ecx = 256;
r.x.edx = FP_OFF(Col ourTable);
r.wds =r.wfs = r.wgs = FP_SEF &);
#el se
r.w. bx = 0;
r.w.cx = 256;
r.w. dx = FP_OFF(Col ourTable);
#endi f
r.w.es = FP_SEGE Col ourTable);
intr(O0x10, &);
for(i =0; i < 256; i++) {
printf("Colour index = % "
"{ Red=%l, G een=%d, Blue=% }\n",
I,
Col our Tabl e[i][0],
Col our Tabl e[i][1],
Col our Table[i][2]);
}
}

Classification: Intel

Systems:

MACRO

Library Functions and Macros 187

fpclassify

Synopsis: #i ncl ude <math. h>
int fpclassify(x);

Description: Thef pcl assi fy macro classifiesits argument x as NaN, infinite, normal, subnormal, or zero. First,
an argument represented in aformat wider than its semantic type is converted to its semantic type.
Then classification is based on the type of the argument.

The argument x must be an expression of real floating type.

The possible return values of f pcl assi f y and their meanings are listed below.

Constant Meaning
FP_INFINITE positive or negative infinity
FP_NAN NaN (not-a-number)
FP_NORMAL normal number (neither zero, subnormal, NaN, nor infinity)
FP_SUBNORMAL subnormal number
FP_ZERO positive or negative zero
Returns: Thef pcl assi f y macro returns the value of the number classification macro appropriate to the value

of its argument x.
See Also: isfinite,isinf,isnan,isnornmal,signbit

Example: #i ncl ude <math. h>
#i ncl ude <stdio. h>

void main(void)
printf("infinity % a normal nunber\n",
fpclassify(INFINITY) == FP_NORMAL ?
"is" @ "is not");

}

produces the following:

infinity is not a normal nunber
Classification: ANS|

Systems: MACRO

188 Library Functions and Macros

_fpreset

Synopsis:

Description:

Returns:
See Also;

Example:

#i ncl ude <fl oat. h>
void fpreset(void);

The _f pr eset function resets the floating-point unit to the default state that the math library requires
for correct function. After afloating-point exception, it may be necessary to call the _f pr eset
function before any further floating-point operations are attempted.

In multi-threaded environments, _f pr eset only affects the current thread.
No vaueisreturned.

_clear87, control 87, controlfp, finite, status87

#i ncl ude <stdi o. h>
#i ncl ude <fl oat. h>

char *status[2] ={ "No", " " };

void main(void)

{

unsigned int fp_status;
fp_status = _status87();

printf("80x87 status\n");
printf("% invalid operation\n",

status[(fp_status & SWINVALID) == 0]);
printf("% denormalized operand\n",

status[(fp_status & SWDENORVAL) == 0]);
printf("% divide by zero\n",

status[(fp_status & SWZERODIVIDE) == 0]);
printf("% overflown",

status[(fp_status & SWOVERFLON == 0]);
printf("% underflow n",

status[(fp_status & SW UNDERFLOW == 0]);
printf("% inexact result\n",

status[(fp_status & SWINEXACT) == 0]);
_fpreset();

}

Classification: Intel

Systems:

All, Netware

Library Functions and Macros 189

fprintf, fwprintf

Synopsis:

Safer C:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdio. h>

int fprintf(FILE *fp, const char *format, ...);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>

int fwprintf(FILE *fp, const wchar_t *format, ...);

The Safer C Library extension providesthe f pri nt f _s function which is a safer alternative to
fprintf. Thisnewer f pri ntf _s function isrecommended to be used instead of the traditional
"unsafe”’ f pri nt f function.

Thef pri nt f function writes output to the file pointed to by fp under control of the argument format.
The format string is described under the description of the pri nt f function.

Thefwpri ntf functionisidentical to f pri nt f except that it accepts awide-character string
argument for format.

Thef pri nt f function returns the number of characters written, or anegative value if an output error
occurred. The fwpri nt f function returns the number of wide characters written, or a negative value
if an output error occurred. When an error has occurred, er r no contains a value indicating the type of
error that has been detected.

_bprintf,cprintf,printf,sprintf,_vbprintf,vcprintf,vfprintf,vprintf,
vsprintf

#i ncl ude <stdi o. h>

char *weekday = { "Saturday" };
char *month = { "April" };

void main(void)
fprintf(stdout, "%, % %, %d\n",

weekday, nonth, 18, 1987);
}

produces the following:
Sat urday, April 18, 1987

fprintf is ANSI
fwprintf is ANS|

fprintf - All, Netware
fwprintf - Al

190 Library Functions and Macros

fprintf_s, fwprintf_s

Synopsis:

Constraints:

Description:

Returns:

See Also:

Example:

Classification:

#define __STDC WANT_LIB EXT1__ 1
#i ncl ude <stdio. h>
int fprintf_s(FILE * restrict stream
const char * restrict format, ...);
#i ncl ude <wchar. h>
int fwprintf_s(FILE * restrict stream
const wchar_t * restrict format, ...);

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler
will beinvoked and f pri nt f _s will return anon-zero value to indicate an error, or the
runtime-constraint handler aborts the program.

Neither stream nor format shall be anull pointer. The % specifier (modified or not by flags, field
width, or precision) shall not appear in the string pointed to by format. Any argumentto fprintf_s
corresponding to a & specifier shall not be anull pointer.

If there is aruntime-constraint violation, the f pri nt f _s function does not attempt to produce further
output, and it is unspecified to what extent f pri nt f _s produced output before discovering the
runtime-constraint violation.

Thef printf_s functionisequivalenttothef pri nt f function except for the explicit
runtime-constraints listed above.

Thefwprintf_s functionisidentical tof pri ntf_s except that it accepts awide-character string
argument for format.

Thef pri nt f _s function returns the number of characters written, or anegative value if an output
error or runtime-constraint violation occurred.

Thefwpri ntf _s function returns the number of wide characters written, or a negative valueif an
output error or runtime-constraint violation occurred.

_bprintf,cprintf,fprintf,printf,sprintf,_vbprintf,vcprintf,vfprintf,
vprintf,vsprintf

#define _ STDC WANT _LIB EXT1 1
#i ncl ude <stdi 0. h>

char *weekday = { "Friday" };
char *month = { "August" };
void main(void)
{
fprintf_s(stdout, "%, % %, %\n",
weekday, nmonth, 13, 2004);
}

produces the following:
Friday, August 13, 2004

fprintf_sis TR 24731
fwprintf_sis TR 24731

Library Functions and Macros 191

fprintf_s, fwprintf_s

Systems: fprintf_s - Al, Netware
fwprintf_s - Al

192 Library Functions and Macros

fpute, fputwe

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>

int fputc(int ¢, FILE *fp);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>

wint_t fputwe(wint_t c, FILE *fp);

Thef put ¢ function writes the character specified by the argument c to the output stream designated by
fp.

Thef put we functionisidentical to f put ¢ except that it converts the wide character specified by c to
amultibyte character and writes it to the output stream.

Thef put ¢ function returns the character written or, if awrite error occurs, the error indicator is set
and f put c returns EOF.

The f put we function returns the wide character written or, if awrite error occurs, the error indicator is
set and f put we returns WEOF. If an encoding error occurs, er r no isset to EI LSEQand f put we
returns WECF.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
f open, f put char, f put s, put ¢, put char, puts,ferror

#i ncl ude <stdi o. h>
voi d main()

FILE *fp;
int c;

fp = fopen("file", "r");
if(fp !'= NULL) {
while((c = fgetc(fp)) !'= EOF)
fputc(c, stdout);
fclose(fp);

}
}

fputc is ANSI
fputwc is ANS|

fputc - All, Netware
fputwe - All

Library Functions and Macros 193

foutchar, _fputchar, _fputwchar

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdio. h>

int fputchar(int c);

int fputchar(int c);

wint t fputwchar(wint_t c);

Thef put char function writes the character specified by the argument ¢ to the output stream
st dout . Thisfunctionisidentical to the put char function.

The function is equivalent to:
fputc(c, stdout);

The _f put char functionisidentical to f put char. Use _f put char for ANSI nhaming
conventions.

The _f put wchar functionisidentical to f put char except that it converts the wide character
specified by ¢ to amultibyte character and writes it to the output stream.

Thef put char function returns the character written or, if awrite error occurs, the error indicator is
set and f put char returns ECF.

The _f put wehar function returns the wide character written or, if awrite error occurs, the error
indicator isset and _f put wchar returns WECF.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
fopen, fputc, f puts, putc, putchar, puts,ferror

#i ncl ude <stdi o. h>

voi d main()

FI LE *fp;
int c;

fp = fopen("file", "r");
if(fp !'= NULL) {
c = fgetc(fp);
while(¢ !'= EOF) {
_fputchar(c);
c = fgetc(fp);

}
fclose(fp);
}
}

WATCOM

fputchar - All, Netware
_fputchar - All, Netware
_fputwechar - All

194 Library Functions and Macros

fputs, fputws

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>

int fputs(const char *buf, FILE *fp);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>

int fputws(const wchar_t *buf, FILE *fp);

Thef put s function writes the character string pointed to by buf to the output stream designated by fp.
The terminating null character is not written.

Thef put ws functionisidentical to f put s except that it converts the wide character string specified
by buf to a multibyte character string and writes it to the output stream.

Thef put s function returns EOF if an error occurs; otherwise, it returns a non-negative value (the
amount written including the new-line character). The f put ws function returns WECF if awrite or
encoding error occurs; otherwise, it returns a non-negative value (the amount written including the
new-line character). When an error has occurred, er r no contains a value indicating the type of error
that has been detected.

fopen, f put c, f put char, put c, put char, puts,ferror

#i ncl ude <stdi o. h>
void main()

FILE *fp;
char buffer[80];

fp = fopen("file", "r");
if(fp I'= NULL) {
whil e(fgets(buffer, 80, fp) !'= NULL)
fputs(buffer, stdout);
fclose(fp);
}
}

fputsisANS
fputwsis ANSI

fputs - All, Netware
fputws - All

Library Functions and Macros 195

fread

Synopsis: #i ncl ude <stdio. h>
size_t fread(void *buf,
size_t elsize,
size_ t nelem

FILE *fp);
Description: Thef r ead function reads nelem elements of elsize bytes each from the file specified by fp into the
buffer specified by buf.
Returns: Thef r ead function returns the number of complete elements successfully read. Thisvaue may be

less than the requested number of elements.

Thef eof and f err or functions can be used to determine whether the end of the file was encountered
or if an input/output error has occurred. When an error has occurred, er r no contains avalue
indicating the type of error that has been detected.

See Also: fopen, feof,ferror

Example: The following example reads a simple student record containing binary data. The student record is
described by the st ruct st udent _dat a declaration.

#i ncl ude <stdio. h>
struct student data {

int student_id;
unsi gned char marks[10];

i
Size_t read_data(FILE *fp, struct student_data *p)
i return(fread(p, sizeof(*p), 1, fp));
voi d main()
FI LE *fp;
Is';][ulct student data std;

fp = fopen("file", "r");
if(fp !'= NULL) {
while(read _data(fp, &td) !'=0) {
printf("id=%l ", std.student_id);
for(i =0; i < 10; i++)
printf("9%8d ", std.marks[i]);
printf("\n");

}
fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

196 Library Functions and Macros

free Functions

Synopsis:

Description:

Returns:

See Also;

Example:

#include <stdlib.h> For ANSI compatibility (free only)
#include <malloc. h> Required for other function prototypes
void free(void *ptr);

void bfree(__segnent seg, void __based(void) *ptr);
void ffree(void __ far “*ptr);

void nfree(void __near *ptr);

When the value of the argument ptr is NULL, the f r ee function does nothing otherwise, the fr ee
function deallocates the memory block located by the argument ptr which points to a memory block
previously allocated through a call to the appropriate version of cal | oc, mal | oc orr eal | oc.
After the call, the freed block is available for allocation.

Each function deall ocates memory from a particular heap, as listed below:

Function Heap

free Depends on data model of the program
_bfree Based heap specified by seg value

_ffree Far heap (outside the default data segment)
_nfree Near heap (inside the default data segment)

In alarge data memory model, the f r ee function isequivalent to the _f f r ee function; in asmall data
memory model, the f r ee function is equivalent to the _nf r ee function.

Thef r ee functions return no value.

cal | oc Functions, _expand Functions, hal | oc, hf ree, mal | oc Functions, _nsi ze Functions,
real | oc Functions, sbr k

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

void main()

{

char *buffer;

buffer = (char *)malloc(80);
if(buffer == NULL) {

printf("Unable to all ocate nenory\n");
} else {

/* rest of code goes here */

free(buffer); [/* deallocate buffer */

}
}

Classification: freeis ANSI

_ffreeisnot ANSI
_bfreeisnot ANSI
_nfreeisnot ANSI

Library Functions and Macros 197

free Functions

Systems: free - All, Netware
_bfree - DOS/ 16, Wndows, Q\NX/ 16, OS/2 1.x(all)
_ffree - DOS/ 16, Wndows, Q\NX/ 16, OS/2 1.x(all)
_nfree - DOS, Wndows, Wn386, Wn32, ONX, O5/2 1.x, OS/2 1.x(MI),
os/ 2- 32

198 Library Functions and Macros

_freect

Synopsis: #i ncl ude <mal |l oc. h>
unsigned int freect(size_t size);

Description: The _freect function returns the number of timesthat _nmal | oc (or mal | oc in small data models)
can be called to alocate aitem of size bytes. In thetiny, small and medium memory models, the default
data segment is only extended as needed to satisfy requests for memory allocation. Therefore, you will
need to call _nheapgr owin these memory models before calling _f r eect inorder to get a
meaningful result.

Returns: The _freect function returnsthe number of calls as an unsigned integer.
See Also: cal | oc, _heapgr owFunctions, mal | oc Functions, _nemavl , _nmemrax
Example: #i ncl ude <stdio. h>

#i ncl ude <mal | oc. h>
void main()
int i;

printf("Can allocate % | ongs before _nheapgrow n",
_freect(sizeof(long)));
_nheapgrow() ;
printf("Can allocate % |ongs after _nheapgrown",
_freect(sizeof(long)));
for(i =1; i < 1000; i++) {
_nmal oc(sizeof (long));

}
printf("After allocating 1000 |ongs:\n");

printf("Can still allocate % |ongs\n",
_freect(sizeof(long)));
}

produces the following:

Can allocate 0 | ongs before _nheapgrow
Can al |l ocate 10447 | ongs after _nheapgrow
After allocating 1000 | ongs:
Can still allocate 9447 |ongs

Classification: WATCOM

Systems: All

Library Functions and Macros 199

freopen, _wfreopen

Synopsis:

Safer C:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdio. h>
FI LE *freopen(const char *fil enaneg,
const char *node,
FILE *fp);
FILE * _wfreopen(const wchar_t *fil enaneg,
const wchar _t *node,
FILE *fp);

The Safer C Library extension provides the f r eopen_s function which is a safer alternative to
f reopen. Thisnewer f r eopen_s function is recommended to be used instead of the traditional
"unsafe" f r eopen function.

The stream located by the f p pointer isclosed. The f r eopen function opens the file whose name is
the string pointed to by filename, and associates a stream with it. The stream information is placed in
the structure located by the fp pointer.

The argument mode is described in the description of the f open function.

The _wf r eopen functionisidentical to f r eopen except that it accepts wide-character string
arguments for filename and mode.

Thef r eopen function returns a pointer to the object controlling the stream. This pointer must be
passed as a parameter to subsequent functions for performing operations on the file. If the open
operation fails, f r eopen returns NULL. When an error has occurred, er r no contains avaue
indicating the type of error that has been detected.

fcl ose,fcl oseal |, fdopen, fopen,fopen_s,freopen_s, fsopen,open, sopen
#i ncl ude <stdio. h>
voi d main()

FI LE *fp;
int c;

fp = freopen("file", "r", stdin);
if(fp !'= NULL) {
while((c = fgetchar()) !'= ECF)
fput char(c);
fclose(fp);
}
}

freopenis ANS|
_wfreopenisnot ANS|

freopen - All, Netware
_wWfreopen - All

200 Library Functions and Macros

freopen_s, _wfreopen_s

Synopsis:

Constraints:

Description:

Returns:

See Also:

Example:

#i ncl ude <stdio. h>
#define __STDC WANT_LIB EXT1__ 1
FI LE *freopen(const char *fil enaneg,
const char *node,
FILE *fp);
FILE *_wfreopen(const wchar_t *fil enane,
const wchar _t *node,
FILE *fp);

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler
will beinvoked and f r eopen__s will return anon-zero value to indicate an error, or the
runtime-constraint handler aborts the program.

None of newstreamptr, mode, and stream shall be anull pointer. If thereis aruntime-constraint
violation, f r eopen_s neither attempts to close any file associated with stream nor attempts to open a
file. Furthermore, if newstreamptr isnot anull pointer, f r eopen_s sets*newstreamptr to the null
pointer.

Thef r eopen_s function opens the file whose name is the string pointed to by filename and associates
the stream pointed to by streamwith it. The mode argument has the same meaning asin the fopen_s
function (including the mode’ s effect on exclusive access and file permissions). If filenameisanull
pointer,the f r eopen_ s function attempts to change the mode of the stream to that specified by mode
,asif the name of the file currently associated with the stream had been used. It is
implementation-defined which changes of mode are permitted (if any), and under what circumstances.
Thef r eopen_s function first attempts to close any file that is associated with stream. Failureto
closethefileisignored. The error and end-of-file indicators for the stream are cleared. If the file was
opened successfully, then the pointer to FILE pointed to by newstreamptr will be set to the value of
stream. Otherwise, the pointer to FILE pointed to by newstreamptr will be set to anull pointer.

The _wf reopen_s functionisidentical tof r eopen_s except that it accepts wide-character string
arguments for filename and mode.

Thef r eopen_s function returns zero if it opened the file. If it did not open the file or therewas a
runtime-constraint violation, f r eopen_s returns anon-zero value.

fcl ose,fcl oseal |, fdopen, fopen,fopen_s,freopen, fsopen,open, sopen

#define _ STDC WANT _LIB EXT1 1
#i ncl ude <stdi o. h>

voi d main()

errno_t rc;
FI LE *fp;
i nt cC;

rc = freopen_s(&p, "file", "r", stdin);
if(rc ==0)
while((c = fgetc(fp)) !'= EOF)
fputchar(c);
fclose(fp);
}

Library Functions and Macros 201

freopen_s, _wfreopen_s

Classification: freopen_sis TR 24371
_wfreopen_sisWATCOM

Systems: freopen_s - All, Netware
_wWreopen_s - Al

202 Library Functions and Macros

frexp

Synopsis: #i ncl ude <math. h>
doubl e frexp(double value, int *exp);

Description: Thef r exp function breaks a floating-point number into a normalized fraction and an integral power of
2. It storesthe integral power of 2 in the int object pointed to by exp.

Returns: Thef r exp function returns the value of x, such that xisa doubl e with magnitude in the interval
[0.5,2) or zero, and value equals x times 2 raised to the power *exp. If valueis zero, then both parts of
the result are zero.

See Also: | dexp, modf

Example: #i ncl ude <stdio. h>
#i ncl ude <nath. h>

void main()

i nt expon;
doubl e val ue;

value = frexp(4.25, &expon);

printf("% %\n", value, expon);

val ue = frexp(-4.25, &expon);

printf("% %\ n", value, expon);
}

produces the following:

0.531250 3
-0.531250 3

Classification: ANSI

Systems: Math

Library Functions and Macros 203

fscanf, fwscanf

Synopsis:

Safer C:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdio. h>

int fscanf(FILE *fp, const char *format, ...);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>

int fwscanf(FILE *fp, const wchar_t *format, ...);

The Safer C Library extension providesthe f scanf _s function which is a safer aternative to
f scanf. Thisnewer f scanf _s function is recommended to be used instead of the traditional
"unsafe’ f scanf function.

Thef scanf function scansinput from the file designated by fp under control of the argument format.
Following the format string isalist of addresses to receive values. The format string is described under
the description of the scanf function.

Thef wscanf functionisidentical to f scanf except that it accepts awide-character string argument
for format.

Thef scanf function returns ECF if an input failure occurred before any conversion. Otherwise, the
number of input arguments for which values were successfully scanned and stored isreturned. When a
file input error occurs, the er r no global variable may be set.

cscanf, scanf, sscanf,vcscanf, vf scanf,vscanf, vsscanf

To scan adate in the form "Saturday April 18 1987":

#i ncl ude <stdi o. h>

void main(void)

{
i nt day, year;
char weekday[10], nonth[10];
FI LE *i n_dat a;
in_data = fopen("file", "r");
if(in_data !'= NULL)
fscanf(in_data, "% % % %",
weekday, nonth, &day, &year);
printf("Wekday=% Mnt h=% Day=% Year =%\ n",
weekday, nonth, day, year);
fclose(in_data);
}
}
fscanf is1SO C90

fwscanf is SO C95

fscanf - All, Netware
fwscanf - All

204 Library Functions and Macros

fscanf_s, fwscanf_s

Synopsis:

Constraints:

Description:

Returns:

See Also:

Example:

#define __STDC WANT_LIB EXT1__ 1

#i ncl ude <stdio. h>

int fscanf_s(FILE * restrict stream

const char * restrict format, ...);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>

int fwscanf_s(FILE * restrict stream

const wchar_t * restrict format, ...);

If any of the following runtime-constraints is violated, the currently active runtime-constraint handler
will beinvoked and f scanf _s will return anon-zero value to indicate an error, or the
runtime-constraint handler aborts the program.

Neither stream nor format shall be anull pointer. Any argument indirected through in order to store
converted input shall not be anull pointer.

If there is aruntime-constraint violation, the f scanf _s function does not attempt to perform further
input, and it is unspecified to what extent f scanf _s performed input before discovering the
runtime-constraint violation.

Thef scanf _s functionisequivalent to f scanf exceptthatthec, s, and[conversion specifiers
apply to apair of arguments (unless assignment suppressionisindicated by a *). Thefirst of these
argumentsisthe sameasfor f scanf. That argument isimmediately followed in the argument list by
the second argument, which hastype si ze_t and gives the number of elementsin the array pointed to
by the first argument of the pair. If the first argument pointsto a scalar object, it is considered to be an
array of one element.

A matching failure occurs if the number of elementsin areceiving object isinsufficient to hold the
converted input (including any trailing null character).

Thefwscanf _s functionisidentical to f scanf _s except that it accepts awide-character string
argument for format.

Thef scanf _s function returns EOF if an input failure occurred before any conversion or if there was
aruntime-constraint violation. Otherwise, the f scanf _s function returns the number of input items
successfully assigned, which can be fewer than provided for, or even zero.

When afile input error occurs, the er r no global variable may be set.
cscanf, fscanf, scanf, sscanf, vcscanf, vf scanf,vscanf, vsscanf

To scan adate in the form "Friday August 13 2004":

#define _ STDC WANT LIB EXT1__ 1
#i ncl ude <stdi o. h>

void main(void)

{
i nt day, year;
char weekday[10], nonth[10];
FI LE *i n_dat a;

Library Functions and Macros 205

fscanf_s, fwscanf_s

in_data = fopen("file", "r");
if(in_data !'= NULL) {
fscanf _s(in_data, "% % % %",
weekday, sizeof(weekday),
nont h, sizeof(nonth),
&day, &year);
printf_s("Wekday=% Month=% Day=% Year =%\ n",
weekday, nonth, day, year);
fclose(in_data);

}

Classification: fscanf_sis TR 24731
fwscanf_sis TR 24731

Systems: fscanf_s - All, Netware
fwscanf _s - All

206 Library Functions and Macros

fseek

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <stdio. h>
int fseek(FILE *fp, long int offset, int where);

Thef seek function changes the read/write position of the file specified by fp. This position defines
the character that will be read or written on the next I/O operation on the file. The argument fp isafile
pointer returned by f open or f r eopen. The argument offset is the position to seek to relative to one
of three positions specified by the argument where. Allowable values for where are:

Value Meaning

SEEK _SET Thenew file position is computed relative to the start of thefile. The value of offset must
not be negative.

SEEK_CUR The new file position is computed relative to the current file position. The value of offset
may be positive, negative or zero.

SEEK_END The new file position is computed relative to the end of the file.

Thef seek function clears the end-of-file indicator and undoes any effects of the unget ¢ function on
the samefile.

Theft el | function can be used to obtain the current position in the file before changing it. The
position can be restored by using the value returned by f t el | in asubsequent call to f seek with the
where parameter set to SEEK SET.

Thef seek function returns zero if successful, non-zero otherwise. When an error has occurred,
er r no contains avalue indicating the type of error that has been detected.

f get pos, fopen, f set pos, ftell

The size of afile can be determined by the following example which saves and restores the current
position of thefile.

#i ncl ude <stdi o. h>

long int filesize(FILE *fp)

{
l ong int save_pos, size_of _file;
save_pos = ftell(fp);
fseek(fp, OL, SEEK END);
size_of _file = ftell(fp);
fseek(fp, save_pos, SEEK_ SET);
return(size_of_file);

}

Library Functions and Macros 207

fseek

void main()
FI LE *fp;

fp = fopen("file", "r");
if(fp !'= NULL) {

printf("File size=%d\n",

fclose(fp);

}
}

Classification: ANSI

Systems: All, Netware

208 Library Functions and Macros

filesize(fp));

fsetpos

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <stdio. h>
int fsetpos(FILE *fp, fpos_t *pos);

Thef set pos function positions the file fp according to the value of the object pointed to by pos,
which shall be avalue returned by an earlier call to the f get pos function on the samefile.

Thef set pos function returns zero if successful, otherwise, the f set pos function returns a non-zero
value. When an error has occurred, er r no contains avalue indicating the type of error that has been
detected.

f get pos, f open, fseek, ftell
#i ncl ude <stdio. h>
void main()

FI LE *fp;

fpos_t position;

auto char buffer[80];

fp = fopen("file", "r");
if(fp !'= NULL) {

Classification: ANSI

Systems:

fgetpos(fp, &position); /* get position */
fgets(buffer, 80, fp); /* read record * |
fsetpos(fp, &position); /* set position */
fgets(buffer, 80, fp); /* read same record */
fclose(fp);
}
}
All, Netware

Library Functions and Macros 209

_fsopen, _wfsopen

Synopsis:

Description:

#i ncl ude <stdio. h>
FILE * fsopen(const char *fil enane,

const char *nobde, int share);
FILE * _wfsopen(const wchar_t *fil enaneg,

const wchar_t *node, int share);

The _f sopen function opens the file whose name is the string pointed to by filename, and associates a
stream with it. The arguments mode and share control shared reading or writing. The argument mode
points to a string beginning with one of the following sequences:

Mode Meaning

" open filefor reading

"w! create file for writing, or truncate to zero length

"a' append: open text file or create for writing at end-of-file

"r+" open file for update (reading and/or writing); use default file translation

"w! create file for update, or truncate to zero length; use default file trandation

"at" append; open file or create for update, writing at end-of-file; use default file trandation

Theletter "b" may be added to any of the above sequencesin the second or third position to indicate
that thefileis (or must be) abinary file (an ANSI requirement for portability to systems that make a
distinction between text and binary files). Under QNX, there is no difference between text files and
binary files.

Opening afilewith read mode (' r’ asthefirst character in the mode argument) failsif the file does not
exist or it cannot be read. Opening afile with append mode (" a’ asthefirst character in the mode
argument) causes all subsequent writesto the file to be forced to the current end-of-file, regardless of
previous callsto the f seek function. When afile is opened with update mode (' +' asthe second or
third character of the mode argument), both input and output may be performed on the associated
stream.

When a stream is opened in update mode, both reading and writing may be performed. However,
writing may not be followed by reading without an intervening call to the f f | ush function or to afile
positioning function (f seek , f set pos , r ewi nd). Similarly, reading may not be followed by
writing without an intervening call to afile positioning function, unless the read resulted in end-of-file.

The shared access for thefile, share, is established by a combination of bits defined in the <shar e. h>
header file. The following values may be set:

Value Meaning

SH_COMPAT Set compatibility mode.

SH_DENYRW Prevent read or write accessto thefile.
SH_DENYWR Prevent write access of thefile.
SH_DENYRD Prevent read access to thefile.
SH_DENYNO Permit both read and write access to the file.

Note that

210 Library Functions and Macros

_fsopen, _wfsopen

fopen(filenane, node);

isthesameas:
_fsopen(filenane, node, SH COWPAT);

The _w sopen functionisidentical to _f sopen except that it accepts wide-character string
arguments for filename and mode.

Returns: The _f sopen function returns a pointer to the object controlling the stream. This pointer must be
passed as a parameter to subsequent functions for performing operations on the file. If the open
operation fails, _f sopen returnsNULL. When an error has occurred, er r no contains avaue
indicating the type of error that has been detected.

See Also: fcl ose,fcl oseal |, fdopen,fopen,freopen, open, sopen

Example: #i ncl ude <stdio. h>
#i ncl ude <share. h>

voi d main()
FI LE *fp;

/*
open a file and prevent others fromwiting to it
*/
fp = fsopen("report.dat", "w', SH DENYWR);
if(fp !'= NULL) {
/* rest of code goes here */
fclose(fp);
}
}

Classification: WATCOM

Systems: _fsopen - All, Netware
_wfsopen - All

Library Functions and Macros 211

fstat

Synopsis: #i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
int fstat(int fildes, struct stat *buf);
int fstati64(int handle, struct _stati64 *buf);
int wfstat(int handle, struct _stat *buf);
int wfstati64(int handle, struct _stati64 *buf);

Description: Thef st at functions obtain information about an open file whose file descriptor isfildes. This
information is placed in the structure located at the address indicated by buf.

Thefile<sys/ st at . h> contains definitions for the structure st at .

At least the following macros are defined in the <sys/ st at . h> header file.

Macro Meaning

S ISFIFO(m) Test for FIFO.

S ISCHR(m) Test for character specidl file.
S ISDIR(m) Test for directory file.

S ISBLK(m) Test for block special file.

S ISREG(m) Test for regular file.

S ISLNK(m) Test for symboalic link.

The value m supplied to the macros is the value of the st _node field of ast at structure. The macro
evaluates to anon-zero value if the test istrue and zero if the test isfalse.

The following bits are encoded within the st _node field of ast at structure.

Mask Owner Permissions

S IRWXU Read, write, search (if adirectory), or execute (otherwise)
S IRUSR Read permission bit

S IWUSR Write permission bit

S IXUSR Search/execute permission bit

S IREAD == S | RUSR (for Microsoft compatibility)

S IWRITE ==S_| WISR (for Microsoft compatibility)

S IEXEC ==S_| XUSR (for Microsoft compatibility)

S | RWKUisthebitwiseinclusive ORof S | RUSR, S | WUSR, andS_| XUSR.

Mask Group Permissions

S IRWXG Read, write, search (if adirectory), or execute (otherwise)
S IRGRP Read permission bit

S IWGRP Write permission bit

S IXGRP Search/execute permission bit

S | RWKGisthebitwiseinclusve ORof S | RGRP, S | WGRP, andS_| XGRP.

212 Library Functions and Macros

fstat

Returns:

Errors:

See Also:

Example:

Mask Other Permissions

S IRWXO Read, write, search (if adirectory), or execute (otherwise)
S IROTH Read permission bit

S IWOTH Write permission bit

S IXOTH Search/execute permission bit

S | RWKOisthebitwiseinclusive ORof S | ROTH, S_| WOTH, andS_| XOTH.
Mask Meaning

S ISUID Set user ID on execution. The process's effective user 1D shall be set to that of the
owner of the file when the fileisrun asaprogram. On aregular file, this bit
should be cleared on any write.

S ISGID Set group 1D on execution. Set effective group ID on the processto thefile's
group when the fileisrun asaprogram. On aregular file, this bit should be
cleared on any write.

The fstati 64, w stat, and_wf st ati 64 functionsdiffer from f st at inthetype of
structure that they are asked tofill in. The _wf st at and_wf st at i 64 functions deal with wide
character strings. The differencesin the structures are described above.

All forms of the f st at function return zero when the information is successfully obtained. Otherwise,
-1isreturned.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
Constant Meaning

EBADF Thefildes argument is not avalid file descriptor.

creat, dup, dup2, open, sopen, st at

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>
#i ncl ude <uni std. h>

voi d main()

{
int fildes, rc;
struct stat buf;

fildes = open("file", O _RDONLY);
if(fildes I=-1) {
rc = fstat(fildes, &buf);
if(rc!l=-1)
printf("File size = %\n", buf.st_size);
close(fildes);

}

Classification: POSIX

Library Functions and Macros 213

fstat

Systems: All, Netware

214 Library Functions and Macros

fsync

Synopsis:

Description:

Returns:

Errors:

See Also;

Example:

#i ncl ude <uni std. h>
int fsync(int fd);

Thef sync function writesto disk all the currently queued data for the open file specified by fd. All
necessary file system information required to retrieve the data is also written to disk. Thefile access
times are al so updated.

Thef sync function is used when you wish to ensure that both the file data and file system information
required to recover the complete file have been written to the disk.

Thef sync function does not return until the transfer is completed.
Thef sync function returns zero if successful. Otherwise, it returns-1and er r no is set to indicate the
error. If the f sync function fails, outstanding i/o operations are not guaranteed to have been

compl eted.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.

Constant Meaning

EBADF The fd argument is not avalid file descriptor.

EINVAL Synchronized i/o is not supported for thisfile.

EIO A physical 1/0 error occurred (e.g., a bad block). The precise meaning is device
dependent.

ENOSYS Thef sync function is not supported.

fstat,open,stat,wite

/*
* Wite a file and nake sure it is on disk
* [

#i ncl ude <fcntl. h>

#i ncl ude <stdi o. h>

#i ncl ude <stdlib. h>

#i ncl ude <string. h>

#i ncl ude <uni std. h>

char buf[512];
voi d main()
int fildes;
int i;

fildes = creat("file",
SIRUSR| S IWSR | S IRGRP | S IWRP);
if(fildes == -1)
perror("Error creating file");
exit(EXIT_FAILURE);

}

Library Functions and Macros 215

fsync

for(i =0; i < 255; ++i) {
menset (buf, i, sizeof(buf));
if(wite(fildes, buf, sizeof(buf)) !'= sizeof(buf)) {
perror("Error witing file");
exit(EXIT_FAILURE);
}
}

if(fsync(fildes = -1) {
perror("Error sync'ing file");
exit(EXIT_FAILURE);
}
close(fildes);
exit(EXI T_SUCCESS);
}

Classification: POSIX 1003.4

Systems: All, Netware

216 Library Functions and Macros

ftell

Synopsis:

Description:

Returns:

See Also;

Example:

#i ncl ude <stdi o. h>
long int ftell(FILE *fp);

Theft el | function returns the current read/write position of the file specified by fp. This position
defines the character that will be read or written by the next I/O operation on the file. The value
returned by f t el | can be used in a subsequent call to f seek to set the file to the same position.

Theft el | function returns the current read/write position of the file specified by fp. When an error is
detected, - 1L isreturned. When an error has occurred, er r no contains a value indicating the type of
error that has been detected.

f get pos, f open, f set pos, f seek
#i ncl ude <stdio. h>

long int filesize(FILE *fp)
{

long int save_pos, size_of_file;

save_pos = ftell(fp);

fseek(fp, OL, SEEK END);
size_of _file = ftell(fp);
fseek(fp, save_pos, SEEK SET);
return(size of file);

}

void main()
FI LE *fp;

fp = fopen("file", "r");
if(fp !'= NULL) {
printf("File size=%d\n", filesize(fp));
fclose(fp);
}
}

Classification: ANSI

Systems:

All, Netware

Library Functions and Macros 217

ftime

Synopsis:

Description:

Returns:

See Also;

Example:

Classification:

Systems:

#i ncl ude <sys/tinmeb. h>
int ftime(struct tineb *tinmeptr);

struct tineb {

tinme_t tine; /* time in seconds since Jan 1, 1970 UTC */
unsigned short mllitm /* mlliseconds */

short timezone; /* difference in mnutes fromUTC */
short dstflag; /* nonzero if in daylight savings time */

1
Thef t i me function gets the current time and stores it in the structure pointed to by timeptr.

Thef ti me function fillsin the fields of the structure pointed to by timeptr. The f t i me function
returns -1 if not successful, and no useful value otherwise.

ascti me Functions, cl ock, cti ne Functions, di ffti me, gnti ne, | ocal ti me, nkti ne,
strftinme,time,tzset

#i ncl ude <stdi 0. h>
#i ncl ude <tine. h>
#i ncl ude <sys/tineb. h>

void main()

struct tinmeb tinmebuf;
char *t od;

ftime(& imebuf);
tod = ctime(& inmebuf.time);
printf("The tine is % 19s. %u %",
tod, timebuf.mllitm &t od[20]);
}

produces the following:
The time is Tue Dec 25 15:58:42.870 1990
WATCOM

All

218 Library Functions and Macros

_fullpath

Synopsis: #i nclude <stdlib. h>
char * _fullpath(char *buffer,
const char *path,
size t size);

Description: The _ful | pat h function returns the full pathname of the file specification in path in the specified
buffer buffer of length size.

The maximum size that might be required for buffer is _ MAX_PATH. If the buffer provided istoo
small, NULL isreturned and er r no is set.

If buffer is NULL then abuffer of size _ MAX_PATHisalocated usingmal | oc. This buffer may be
freed using the f r ee function.

If path is NULL or pointsto anull string ("") then the current working directory is returned in buffer.

Returns: The _f ul | pat h function returns a pointer to the full path specification if no error occurred.
Otherwise, NULL isreturned.

Errors When an error has occurred, er r no contains a value indicating the type of error that has been detected.
Constant Meaning
ENOENT The current working directory could not be obtained.
ENOMEM The buffer could not be allocated.
ERANGE The buffer passed was too small.
See Also: _makepat h, _splitpath
Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>

void main(int argc, char *argv[])
{
int i;
char buff[PATH_MAX];

for(i =1; i < argc; ++i) {
puts(argv[i]);
if(_fullpath(buff, argv[i], PATH . MAX)) {
puts(buff);
} else {
puts("FAILI'");

}
}

Classification: WATCOM

Systems: All, Netware

Library Functions and Macros 219

fwide

Synopsis: #i ncl ude <stdio. h>
#i ncl ude <wchar. h>
int fwide(FILE *fp, int node);

Description: Thef wi de function determines the orientation of the stream pointed to by fp. If mode is greater than
zero, the function first attempts to make the stream wide oriented. If mode is less than zero, the
function first attempts to make the stream byte oriented. Otherwise, modeis zero and the f wi de
function does not alter the orientation of the stream.

Returns: Thef wi de function returns avalue greater than zero if, after the call, the stream has wide orientation, a
value less than zero if the stream has byte orientation, or zero if the stream has no orientation.

See Also: fopen, freopen

Example: #i ncl ude <stdio. h>
#i ncl ude <wchar. h>

void main(void)

FI LE *fp;
i nt node;

fp = fopen("file", "r");
if(fp !'= NULL) {
nmode = fwide(fp, -33);
printf("orientation: %\n",
node > 0 ? "w de"
nmode < 0 ? "byte" : "none");
}
produces the following:
orientation: byte
Classification: ANS

Systems: All

220 Library Functions and Macros

fwrite

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <stdio. h>

size_ t fwite(const void *buf,
size_t elsize,
size_t nelem
FILE *fp);

Thef wri t e function writes nelem elements of elsize bytes each to the file specified by fp.

Thef wri t e function returns the number of complete elements successfully written. This value will be
less than the requested number of elements only if awrite error occurs. When an error has occurred,

er r no contains avalue indicating the type of error that has been detected.

ferror,fopen

#i ncl ude <stdio. h>

struct student data {

int student id;
unsi gned char marks[10];

b

void main()
FI LE *fp;
struct student data std;
int i;

fp = fopen("file", "W);
if(fp !'= NULL) {
std. student _id = 1001;
for(i =0; i <10; i++)
std.marks[i] = (unsigned char) (85 + i);

/* wite student record with marks */
i = fwite(&std, sizeof(std), 1, fp);

Classification: ANSI

Systems:

printf("%l record witten\n", i);
fclose(fp);
}
}
All, Netware

Library Functions and Macros 221

gevt, _gevt, _wgcevt

Synopsis: #i nclude <stdlib. h>
char *gcvt(doubl e val ue,
int ndigits,
char *buffer);
char *_gcvt(doubl e val ue,
int ndigits,
char *buffer);
wchar _t * _wgcvt(doubl e val ue,
int ndigits,
wchar _t *buffer);

Description: Thegcvt function converts the floating-point number value into a character string and stores the result
in buffer. The parameter ndigits specifies the number of significant digits desired. The converted
number will be rounded to this position.

If the exponent of the number islessthan -4 or is greater than or equal to the number of significant
digits wanted, then the number is converted into E-format, otherwise the number is formatted using
F-format.

The _gcvt functionisidentical togcvt. Use _gcvt for ANSI/ISO naming conventions.

The _wgcvt functionisidentical to gcvt except that it produces awide-character string (whichis

twice as long).
Returns: Thegcvt function returns a pointer to the string of digits.
See Also: ecvt,fcvt,printf
Example: #i ncl ude <stdio. h>

#i ncl ude <stdlib. h>
void main()
char buffer[80];

printf("%\n", gcvt(-123.456789, 5, buffer));
printf("%\n", gcvt(123.456789E+12, 5, buffer));

}

produces the following:

-123. 46
1. 2346E+014

Classification: WATCOM
_gevt conforms to ANSI/ISO naming conventions

Systems: gcvt - Math
_gcvt - Math
_wgcvt - Math

222 Library Functions and Macros

_getactivepage

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <graph. h>
short _FAR _getactivepage(void);

The _get act i vepage function returns the number of the currently selected active graphics page.

Only some combinations of video modes and hardware allow multiple pages of graphicsto exist. When
multiple pages are supported, the active page may differ from the visual page. The graphics
information in the visual page determines what is displayed upon the screen. Animation may be
accomplished by alternating the visual page. A graphics page can be constructed without affecting the
screen by setting the active page to be different than the visual page.

The number of available video pages can be determined by using the _get vi deoconf i g function.
The default video pageis 0.

The _get act i vepage function returns the number of the currently selected active graphics page.
_setactivepage,_setvisual page,_getvi sual page,_getvi deoconfig

#i ncl ude <coni o. h>
#i ncl ude <graph. h>

mai n()

i nt ol d_apage;
i nt ol d_vpage;

_setvideonode(_HRES16COLCR);
ol d_apage = _getactivepage();
ol d_vpage = _getvisual page();
/[* draw an ellipse on page 0 */
_setactivepage(0);
_setvisual page(0);
_ellipse(_GFILLINTERI OR 100, 50, 540, 150);
/* draw a rectangl e on page 1 */
_Setactivepage(1);
_rectangle(_GFILLINTERI OR, 100, 50, 540, 150);
getch();
/* display page 1 */
_setvisual page(1);
getch();
_setactivepage(ol d_apage);
_setvisual page(ol d_vpage);
_setvi deonode(_ DEFAULTMODE);
}

Classification: _getactivepageis PC Graphics

Systems:

DOS, QNX

Library Functions and Macros 223

_getarcinfo

Synopsis:

Description:

Returns:

See Also:

Example:

#i ncl ude <graph. h>

short _FAR _getarcinfo(struct xycoord FAR *start_pt,
struct xycoord _FAR *end_pt,
struct xycoord FAR *inside pt);

The _get ar ci nf o function returns information about the arc most recently drawn by the _ar c or
_pi e functions. The arguments start_pt and end_pt are set to contain the endpoints of thearc. The
argument inside_pt will contain the coordinates of a point within the pie. The pointsare all specified in
the view coordinate system.

The endpoints of the arc can be used to connect other lines to the arc. Theinterior point can be used to
fill the pie.

The _get ar ci nf o function returns a non-zero value when successful. If the previous arc or pie was
not successfully drawn, zero is returned.

_arc,_pie

#i ncl ude <coni 0. h>
#i ncl ude <graph. h>

mai n()

{

struct xycoord start_pt, end _pt, inside_pt;

_setvideonode(_VRES16COLCR);

_arc(120, 90, 520, 390, 520, 90, 120, 390);
_getarcinfo(&start_pt, &end_pt, & nside_pt);
_nmoveto(start_pt.xcoord, start_pt.ycoord);
_lineto(end_pt.xcoord, end_pt.ycoord);
getch();

_setvideonode(_ DEFAULTMODE);

}

produces the following:

224 Library Functions and Macros

_getarcinfo

\ J

Classification: PC Graphics

Systems: DOS, QNX

Library Functions and Macros 225

_getbkcolor

Synopsis: #i ncl ude <graph. h>
long _FAR _getbkcolor(void);

Description: The _get bkcol or function returns the current background color. In text modes, the background
color controls the area behind each individual character. 1n graphics modes, the background refersto
the entire screen. The default background color is 0.

Returns: The _get bkcol or function returns the current background color.
See Also: _setbkcol or, _remappal ette
Example: #i ncl ude <coni o. h>

#i ncl ude <graph. h>

long colors[16] = {
_BLACK, _BLUE, _GREEN, _CVYAN,
_RED, _MAGENTA, BROWN, _WHI TE,
_GRAY, _LIGHTBLUE, _LIGHTGREEN, _ LI GHTCYAN,
_LIGHTRED, _ LI GHTMAGENTA, _YELLOW _ BRI GHTWHI TE

b
mai n()
{
| ong ol d_bk;
i nt bk;
_setvideonode(_VRES16COLCR);
ol d_bk = _getbkcolor();
for(bk = 0; bk < 16; ++bk) {
_setbkcolor(colors[bk]);
getch();
_setbkcolor(old _bk);
_setvideonode(_ DEFAULTMODE) ;
}

Classification: PC Graphics

Systems: DOS, QNX

226 Library Functions and Macros

getc, getwc

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>

int getc(FILE *fp);

#i ncl ude <stdio. h>

#i ncl ude <wchar. h>
wint_t getwe(FILE *fp);

The get ¢ function gets the next character from the file designated by fp. The character is returned as
ani nt value. The get ¢ functionisequivalent to f get c, except that it may be implemented as a
macro.

The get we function isidentical to get ¢ except that it gets the next multibyte character (if present)
from the input stream pointed to by fp and convertsit to awide character.

The get ¢ function returns the next character from the input stream pointed to by fp. If the streamisat
end-of-file, the end-of-file indicator is set and get ¢ returns EOF. If aread error occurs, the error
indicator is set and get ¢ returns ECF.

The get we function returns the next wide character from the input stream pointed to by fp. If the
stream is at end-of-file, the end-of-file indicator is set and get we returns WECF. If aread error occurs,
the error indicator is set and get we returns WECF. If an encoding error occurs, er r no is set to

El LSEQand get we returns WECF.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
fgetc,fgetchar,fgets,fopen,getchar,gets,ungetc

#i ncl ude <stdi o. h>

void main()

FI LE *fp;
int c;

fp = fopen("file", "r");
if(fp !'= NULL) {
while((c = getc(fp)) !'= ECF)
put char (c);
fclose(fp);
}
}

getcisANSI
getwc isANS

getc - All, Netware
getwe - All

Library Functions and Macros 227

getch

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <coni o. h>
int getch(void);

The get ch function obtains the next available keystroke from the console. Nothing is echoed on the
screen (the function get che will echo the keystroke, if possible). When no keystroke is available, the

function waits until akey is depressed.

Thekbhi t function can be used to determine if akeystroke is available.

A value of EOF isreturned when an error is detected; otherwise the get ch function returns the value

of the keystroke (or character).

When the keystroke represents an extended function key (for example, afunction key, a
cursor-movement key or the ALT key with aletter or adigit), Oxff is returned and the next call to

get ch returns avalue for the extended function.
get che, kbhi t , put ch, unget ch

#i ncl ude <stdio. h>
#i ncl ude <coni 0. h>

voi d main()

{

int c;

printf("Press any key\n");

c = getch();

printf("You pressed %(%l)\n",
}

WATCOM

C,

All, Netware

228 Library Functions and Macros

getchar, getwchar

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <stdi o. h>

int getchar(void);

#i ncl ude <wchar. h>
wint _t getwchar(void);

Theget char function isequivalent to get ¢ with the argument st di n.

Theget wehar functionissimilar to get char except that it is equivalent to get we with the
argument st di n.

The get char function returns the next character from the input stream pointed to by st di n. If the
stream is at end-of-file, the end-of-fileindicator isset and get char returns ECF. |If aread error
occurs, the error indicator is set and get char returns EOF.

Theget wehar function returns the next wide character from the input stream pointed to by st di n.
If the stream is at end-of-file, the end-of-fileindicator is set and get wehar returns WEOF. If aread
error occurs, the error indicator is set and get wechar returns WECF. If an encoding error occurs,
errnoissetto El LSEQand get wchar returns WEOF.

When an error has occurred, er r no contains a value indicating the type of error that has been detected.
fgetc,fgetchar, fgets,fopen,getc,gets,ungetc

#i ncl ude <stdi o. h>

void main()

FI LE *fp;
int c;

fp = freopen("file", "r", stdin);
while((c = getchar()) != EOF)
put char(c);
fclose(fp);
}

getchar isANSI
getwchar is ANSI

getchar - All, Netware
getwchar - All

Library Functions and Macros 229

getche

Synopsis:

Description:

Returns:

See Also:

Example:

Classification:

Systems:

#i ncl ude <coni o. h>
int getche(void);

The get che function obtains the next available keystroke from the console. The function will wait
until akeystrokeis available. That character is echoed on the screen at the position of the cursor (use

get ch when it isnot desired to echo the keystroke).

Thekbhi t function can be used to determine if akeystroke is available.

A value of EOF is returned when an error is detected; otherwise, the get che function returns the value

of the keystroke (or character).

When the keystroke represents an extended function key (for example, afunction key, a
cursor-movement key or the ALT key with aletter or adigit), Oxff is returned and the next call to

get che returns avalue for the extended function.
get ch, kbhi t, put ch, unget ch

#i ncl ude <stdio. h>
#i ncl ude <coni 0. h>

voi d main()

{

int c;

printf("Press any key\n");

c = getche();

printf("You pressed %(%l)\n",
}

WATCOM

C,

All, Netware

230 Library Functions and Macros

_getcliprgn

Synopsis:

Description:

Returns:
See Also:

Example:

Classification:

Systems:

#i ncl ude <graph. h>
void FAR getcliprgn(short FAR *x1, short _FAR *y1,
short _FAR *x2, short _FAR *y2);

The _get cl i pr gn function returns the location of the current clipping region. A clipping region is
defined withthe _set cl i prgn or_set vi ewport functions. By default, the clipping region isthe
entire screen.

The current clipping region is arectangular area of the screen to which graphics output is restricted.
Thetop left corner of the clipping region is placed in the arguments (x1, y1) . The bottom right
corner of the clipping regionisplacedin (x2, y2) .

The _get cl i pr gn function returns the location of the current clipping region.
_setcliprgn,_setviewport

#i ncl ude <coni 0. h>
#i ncl ude <graph. h>

mai n()
{
short x1, yl, x2, y2;

_setvideonode(_VRES16COLCR);
_getcliprgn(&1, &1, &2, &2);
_setcliprgn(130, 100, 510, 380);
_ellipse(_GBORDER, 120, 90, 520, 390);
getch();
_setcliprgn(x1, yl, x2, y2);
_setvideonode(_ DEFAULTMODE);

}

PC Graphics

DOS, QNX

Library Functions and Macros 231

getemd

Synopsis: #i ncl ude <process. h>
char *getcnd(char *cnd_line);

Description: The get cnd function causes the command line information, with the program name removed, to be
copied to cmd_line. The information isterminated witha ' \ 0’ character. This provides a method of
obtaining the original parametersto a program as asingle string of text.

This information can also be obtained by examining the vector of program parameters passed to the
main function in the program.

Returns: The address of the target cmd_lineis returned.

See Also: abort,atexit, bgetcnd,cl ose,exec...,exit, Exit,_exit,getenv, nain,
onexi t, put env, si gnal ,spawn. .., systemwait

Example: Suppose a program were invoked with the command line

nyprog arg-1 (ny stuff) here
where that program contains

#i ncl ude <stdio. h>
#i ncl ude <process. h>

void main()
char cnds[128];

printf("%\n", getcnd(cnds));

produces the following:
arg-1 (my stuff) here
Classification: WATCOM

Systems: All, Netware

232 Library Functions and Macros

_getcolor

Synopsis:

Description:

Returns:
See Also:

Example:

#i ncl ude <graph. h>
short _FAR _getcolor(void);

The _get col or function returns the pixel value for the current color. Thisisthe color used for
displaying graphics output. The default color value is one less than the maximum number of colorsin
the current video mode.

The _get col or function returns the pixel value for the current color.
_setcol or

#i ncl ude <coni o. h>
#i ncl ude <graph. h>

mai n()
{

int col, old _col;

_setvideonode(_VRES16COLCR);

old_col = _getcolor();

for(col = 0; col < 16; ++col) {
_setcolor(col);
_rectangl e(_GFILLINTERI OR, 100, 100, 540, 380);
getch();

_setcolor(old_col);
_setvideonode(_ DEFAULTMODE) ;

}

Classification: PC Graphics

Systems:

DOS, QNX

Library Functions and Macros 233

_getcurrentposition Functions

Synopsis: #i ncl ude <graph. h>
struct xycoord FAR getcurrentposition(void);

struct _wxycoord FAR _getcurrentposition W void);

Description: The _get current posi t i on functions return the current output position for graphics. The
_getcurrent positi on function returns the point in view coordinates. The
_getcurrent positi on_wfunction returns the point in window coordinates.

The current position defaults to the origin, (0, 0) , when anew video modeis selected. It ischanged
by successful callstothe _arc, _novet o and_I|i net o functionsaswell asthe set vi ewport
function.

Note that the output position for graphics output differs from that for text output. The output position
for text output can be set by use of the _set t ext posi ti on function.

Returns: The _get cur rent posi ti on functions return the current output position for graphics.
See Also: _noveto,_settextposition
Example: #i ncl ude <coni o. h>

#i ncl ude <graph. h>
mai n()
struct xycoord ol d_pos;

_setvideonode(_VRES16COLCR);
old pos = _getcurrentposition();
_nmoveto(100, 100);
_lineto(540, 100);
_lineto(320, 380);
_lineto(100, 100);
_nmoveto(ol d_pos. xcoord, ol d_pos.ycoord);
getch();
_setvideonode(_ DEFAULTMODE);
}

Classification: PC Graphics

Systems: _getcurrentposition - DCS, OQNX
_getcurrentposition_w - DOS, QNX

234 Library Functions and Macros

getewd

Synopsis:

Description:

Returns:

Errors:

See Also:

Example:

Classification:

Systems:

#i ncl ude <unistd. h>
char *getcwd(char *buffer, size t size);

The get cwd function returns the name of the current working directory. The buffer addressis either
NULL or isthe location at which a string containing the name of the current working directory is placed.
In the latter case, the value of sizeisthe length (including the delimiting ' \ O’ character) which can be
be used to store this name.

The maximum size that might be required for buffer is PATH_MAX + 1 bytes.

Extension: When buffer has avalue of NULL, astringisallocated using mal | oc to contain the name
of the current working directory. This string may be freed using the f r ee function.